18 resultados para migmatization
Resumo:
Migmatization of gabbroic rocks at 2-3 kbar has occurred in the metamorphic contact aureole of a mafic pluton in the Fuerteventura Basal Complex (Canary Island;). Migmatites are characterized by a dense network: of closely spaced millimetre-wide leucocratic veins with perfectly preserved igneous textures. They are all relatively enriched in Al, Na I: Sr Ba, Nb, Y and the rare earth elements compared with the unaffected country rock beyond the aureole. Migmatization under such low-pressure conditions war possible because of the unusual tectonic and magmatic contact in which ii occurred. Multiple basic intrusions associated with extrusive volcanic activity created high heat flow in a small area. Alkaline and metasomatized rocks present in the country rock of the intruding pluton were leached by high-temperature fluids during contact metamorphism. These enriched fluids then favoured partial melting of the host gabbroic rocks, and contaminated both the leucosomes and melanosomes. A transpressive tectonic setting at the time of intrusion created shearing along the contact between the intrusion and its host rock. This shearing enhanced circulation of the fluids and allowed segregation of the nea-formed melts from their restite by opening tension veins into which the melts migrated. Depending on the relative timing of melt segregation and recrystallization leucosomes range in composition from a 40-60% mixture of clinopyroxene (+/- amphibole) and plagioclase to almost pure feldspathic veins. Comparable occurrences of gabbros migmatized at low pressure are expected only at a snail scale in localized areas of high heat flow in the presence of fluids, such as in. mid-ocean ridges or ocean-islands.
Resumo:
Spectacular shallow-level migmatization of ferrogabbroic rocks occurs in a metamorphic contact aureole of a gabbroic pluton of the Tierra Mala massif (TM) on Fuerteventura (Canary Islands). In order to improve our knowledge of the low pressure melting behavior of gabbroic rocks and to constrain the conditions of migmatization of the TM gabbros, we performed partial melting experiments on a natural ferrogabbro, which is assumed as protolith of the migmatites. The experiments were performed in an internally heated pressure vessel (IHPV) at 200 MPa, 930-1150 degreesC at relatively oxidizing conditions. Distinct amounts of water were added to the charge. From 930 to 1000 degreesC, the observed experimental phases are plagioclase (An(60-70)), clinopyroxene, amphibole (titanian magnesiohastingsites), two Fe-Ti oxides, and a basaltic, K-poor melt. Above 1000 degreesC, amphibole is no longer stable. The first melts are very rich in non-native plagioclase (>70 wt.%). This indicates that at the beginning of partial melting plagioclase is the major phase which is consumed to produce melt. In the experiments, plagioclase is stable up to high temperatures (1060 degreesC) showing increasing An content with temperature. This is not compatible with the natural migmatites, in which An-rich plagioclase is absent in the melanosomes, while amphibole is stable. Our results show that the partial melting of the natural rocks cannot be regarded as an ``in-situ'' process that occurred in a closed system. Considerable amounts of alkalis probably transported by water-rich fluids, derived from the mafic pluton underplating the TM gabbro, were necessary to drive the melting reaction out of the stability range of plagioclase. A partial melting experiment with a migmatite gabbro showing typical ``in-situ'' textures as starting material supports this assumption. Crystallization experiments performed at 1000 degreesC on a glass of the fitised ferrogabbro with different water contents added to the charge show that generally high water activities could be achieved (crystallization of amphibole), independently of the bulk water content, even in a system with very low initial bulk water content (0.3 wt.%). Increasing water contents produce plagioclase richer in An, reduces the modal proportion of plagioclase in the crystallizing assemblage and extends the melt fraction. High melt fractions of >30 wt.% could only be observed in systems with high bulk water contents (> - 2 wt.%). This indicates that the migmatites were generated under water-rich conditions (probably water-saturated), since those migmatites, which are characterized as ``in-situ'' formations, show generally high amounts of leucosomes (>30 wt.%). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In the Cape Caribou River allochthon (CCRA), metaigneous and gneissic units occur as a shallowly plunging synform in the hanging wall of the Grand Lake thrust system (GLTS), a Grenvillian structure that forms the boundary between the Mealy Mountains and Groswater Bay terranes. The layered rocks of the CCRA are cut by a stockwork of monzonite dykes related to the Dome Mountain suite and by metadiabase-amphibolite dykes that probably form part of the ca. 1380 Ma Mealy swarm. The mafic dykes appear to postdate much of the development of subhorizontal metamorphic layering within the lower parts of the CCRA. The uppermost (least metamorphosed) units of the CCRA, the North West River anorthosite-metagabbro and the Dome Mountain monzonite suite, have been dated at 1625 +/- 6 and 1626 +/- 2 Ma, respectively. An amphibolite unit that concordantly underlies the anorthosite-metagabbro and is intruded discordantly by monzonite dykes has given metamorphic ages of 1660 +/- 3 and 1631 +/- 2 Ma. Granitoid gneisses that form the lowest level of the CCRA have given a migmatization age of 1622 +/- 6 Ma. The effects of Grenvillian metamorphism become apparent in the lower levels of the allochthon where gneisses, amphibolite, and mafic dykes have given new generation zircon ages of 1008 +/- 2, 1012 +/- 3, and 1011 +/- 3 Ma, respectively. A posttectonic pegmatite has also given zircon and monazite ages of 1016(-3)(+7) and 1013 +/- 3 Ma, respectively. Although these results indicate new growth of Grenvillian zircon, this process was generally not accompanied by penetrative deformation or melting. Thus, the formation of gneissic fabrics and the overall layered nature of the lower CCRA are a result primarily of Labradorian (1660-1620 Ma) tectonism and intrusion, and probably reflect early movement on an ancestral GLTS. Grenvillian heating and metamorphism (up to granulite facies) was strongly concentrated towards the base of the CCRA and probably occurred during northwestward thrusting of the allochthon over the Groswater Bay terrane.
Resumo:
subsequent extension-induced exhumation. Geochronological dating of various Structural, thermobarometric, and geochronological data place limits on the age and tectonic displacement along the Zanskar shear zone, a major north-dipping synorogenic extensional structure separating the high-grade metamorphic sequence of the High Himalayan Crystalline Sequence from the overlying low-grade sedimentary rocks of the Tethyan Himalaya, A complete Barrovian metamorphic succession, from kyanite to biotite zone mineral assemblages, occurs within the I-km-thick Zanskar shear zone. Thermobarometric data indicate a difference In equilibration depths of 12 +/- 3 km between the lower kyanite zone and the garnet zone, which is Interpreted as a minimum estimate for the finite vertical displacement accommodated by the Zanskar shear zone. For the present-day dip of the structure (20 degrees), a simple geometrical model shows that a net slip of 35 +/- 9 km is required to regroup these samples to the same structural level. Because the kyanite to garnet zone rocks represent only part of the Zanskar shear zone, and because its original dip may have been less than the present-day dip, these estimates fur the finite displacement represent minimum values. Field relations and petrographic data suggest that migmatization and associated leucogranite intrusion in the footwall of the Zanskar shear zone occurred as a continuous profess starting at the Barrovian metamorphic peak and lasting throughout the subsequent extension-induced exhumation. Geochronological dataing of various leucogranitic plutons and dikes in the Zanskar shear zone footwall indicates that the main ductile shearing along the structure ended by 19.8 Ma and that extension most likely initiated shortly before 22.2 Ma.
Resumo:
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The EI Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670-820 degrees C and 4.5-5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between approximate to 477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We studied the P-T-t evolution of a mid-crustal igneous-metamorphic segment of the Famatinian Belt in the eastern sector of the Sierra de Velasco during its exhumation to the upper crust. Thermobarometric and geochronological methods combined with field observations permit us to distinguish three tectonic levels. The deepest Level I is represented by metasedimentary xenoliths and characterized by prograde isobaric heating at 20-25 km depth. Early/Middle Ordovician granites that contain xenoliths of Level I intruded in the shallower Level II. The latter is characterized by migmatization coeval with granitic intrusions and a retrograde isobaric cooling P-T path at 14-18 km depth. Level II was exhumed to the shallowest supracrustal Level III, where it was intruded by cordierite-bearing granites during the Middle/Late Ordovician and its host-rock was locally affected by high temperature-low pressure HT/LP metamorphism at 8-10 km depth. Level III was eventually intruded by Early Carboniferous granites after long-term slow exhumation to 6-7 km depth. Early/Middle Ordovician exhumation of Level II to Level III (Exhumation Period I,0.25-0.78 mm/yr) was faster than exhumation of Level III from the Middle/Late Ordovician to the Lower Carboniferous (Exhumation Period II, 0.01-0.09 mm/yr). Slow exhumation rates and the lack of regional evidence of tectonic exhumation suggest that erosion was the main exhumation mechanism of the Famatinian Belt. Widespread slow exhumation associated with crustal thickening under a HT regime suggests that the Famatinian Belt represents the middle crust of an ancient Altiplano-Puna-like orogen. This thermally weakened over-thickened Famatinian crust was slowly exhumed mainly by erosion during similar to 180 Myr. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The fissures aquifer northeast semi-arid Brazilian, present high text frequently of leave, with of low a hídric availability. The research has as objective main to analyze the components that inside influence in the salinity of the waterbearing fissures of an evaluation physicist-chemistry of the water, leading in consideration the physical interventions of the environment. One used techniques of interpretation of image of Landsat satellite -1999 and delimitation of the micro basin through the topographical map SUDENE. One identified waters of the NaCl type with Ca++ and Mg++ in secondary concentrations. The analyzed wells (15), had presented an average salinity of 5.147 mg/L of STD and a well only supplies drinking waters with 319 mg/L of STD. The recharge of the aquifer one if carries through for infiltration in the open fracture of ortognaisse it migmatization. The type and directions of the fracture do not control the STD. Relations between salinity and out let do not exist. The quality of the well of low salinity is identical the superficial waters (aquifer dam and alluvial). The studies of the meteoric erosion processes had evidenced that in the transformations of the rock in ground, the Ca++ and Na+ are taken for superficial waters. The treatment of the data chemical showed that the grade of Na+, Ca++, Mg++ and Cl-are controlled for the evaporation process, from only water that would have the qualities of superficial waters or the well of low salinity. Already the HCO3-grade is controlled for the precipitation of the dolomite. The STD of this aquifer one would be consequence of the high tax of evaporation of dams constructed in regions of plain topography. You leave them precipitated in deep argillaceous ones dry dams are led for the aquifer in first rains. The research suggests some recommendations for the use and exploitation of the water salinity in piscicultura, carcinicultura, culture of the grass-salt (Atriplex sp), among others
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T > 750 degrees C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramatic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events.We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 +/- 2.1 Ma, Chalk Mountain 377.7 +/- 2.5 Ma, Mt. Airy 334 +/- 3 Ma, Stone Mountain 335.6 +/- 1.0 Ma, and Rabun 335.1 +/- 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians.
Resumo:
Migmatites, high-grade gneisses and granitoids represent the most important Precambrian rocks of Sao Joao da Boa Vista region. Structures are interpreted as due to low-angle oblique non-coaxial ductile shear, developed under conditions of amphibolite facies. Transcurrent ductile shear zones and associated drags modify the foliation and lineations orientations. A first phase of migmatization related to anatexis seems to be developed before or early during the thermo-tectonic process. A second one is syntectonic, and represents the main regional phase. Joints and faults represent the brittle features, the faults marked by cataclastic rocks and intense retrometamorphism along the main zones. -from English summary
Resumo:
Around the southern margins of the São Francisco Craton, there is a zone of tectonic interference between the Brasília belt to the west and the younger Ribeira belt to the east. U-Pb monazite and 40Ar/39Ar cooling age determinations carried out in the area reveal the cooling histories of these belts and the timing of tectonic overprint, unraveling the final stages of Brasiliano Orogeny in SE Brazil. The U-Pb monazite data from migmatized paragneisses and late-stage pegmatites in the Socorro-Guaxupé Nappe System of the southern Brasília belt show that migmatization peaked between ca. 613±1 and 607±3 Ma. 40Ar/39Ar biotite and muscovite ages of paragneisses and schists in this area indicate that the northern high-grade core of the Nappe System (Guaxupé Domain) was uplifted and cooled through the 350°C isotherm between 599±1 and 587±1 Ma. In contrast, samples from the southern high-grade core of the Nappe System, the Socorro Domain, south of the Jacutinga shear zone, yields a broader and younger spectrum of 40Ar/39Ar biotite ages between 571±1 and 562±1 Ma, attributed to a later uplift and cooling of the crust. The cooling ages can be assigned to local resetting of the 40Ar/39Ar system during transpressive tectonic overprint due to reactivation as a result of collision of the Ribeira belt. A younger group of 40Ar/39Ar mica ages (537±1 to 521±1Ma) in schists of the Socorro Domain, are associated with transpressional structures of the Ribeira belt. Rock samples from the Jacutinga and Três Corações shear zones, yield 40Ar/39Ar biotite-muscovite ages around 520 Ma. These are typical cooling ages of the Ribeira belt, and are interpreted to mark the western limit of the Ribeira belt transpressional regime within the Brasília belt. The youngest biotite-muscovite cooling ages in schists of the Socorro Domain, between 510±2 and 491±1 Ma, mark the final cooling and exhumation of that part of the Brasília belt.
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T >750 °C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramafic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events. We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 ± 2.1 Ma, Chalk Mountain 377.7 ± 2.5 Ma, Mt. Airy 334 ± 3Ma, Stone Mountain 335.6 ± 1.0 Ma, and Rabun 335.1 ± 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians. © 2006 Geological Society of America.
Resumo:
Rio Apa Massif crops out in the Mato Grosso do Sul state and corresponds to the southeastern portion of the Amazonian Craton dominantly Paleoproterozoic in age. Rio Apa Complex is oldest and it is composed mainly by migmatitic orthogneisses, beyond amphybolites, tonalities and granodiorite. Alto Tererê Group is composed by schists, biotitemuscovite gneisses and micaceous quartzites generally rich in garnets, beyond metabasic rocks of low amphibolite facies. The Amoguijá Group is constituted by Alumiador Intrusive Suite, which is represented by a sieno to monzogranitic batholith and Serra da Bocaina Volcanic Suite composed of volcanoclastic rocks of alkali riolites to monzoriolites compositions and pyroclastic products. Overlaying towards East and South occurs Neoproterozoic metasedimentary rocks from the Paraguai Folded Belt (Cuiabá, Corumbá and Jacadigo Groups - Urucum Formation). Structural-metamorphic framewok is identified by five deformational phases but the actual tectonic and metamorphic structure shows the superposed tectonic array of the Paraguai Folded Belt. Rocks from Rio Apa Complex, Alto Tererê Group and Amoguijá Group record an older structural evolution defined by (Dn-1 and Dn). The deformational phases (Dn+1 and Dn+2) are visible mainly in rocks of Paraguai Folded Belt beyond the last deformation (Dn+3) that imprints all sequences.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O mapeamento geológico realizado na área de Nova Canadá, porção sul do Domínio Carajás, aliado aos estudos petrográficos e geoquímicos, permitiram a caracterização de pelo menos três novas unidades que antes estavam inseridas no contexto geológico do Complexo Xingu. São elas: (i) Leucogranodiorito Nova Canadá, que é constituído por rochas leucogranodioríticas mais enriquecidas em Al2O3, CaO, Na2O, Ba, Sr e na razão Sr/Y, que mostram fortes afinidades geoquímicas com a Suíte Guarantã do Domínio Rio Maria, as quais também podem ser correlacionadas aos TTGs Transicionais do Cráton Yilgarn. Estas rochas apresentam padrão ETR levemente fracionado, mostram baixas razões (La/Yb)N e anomalias negativas de Eu ausentes ou discretas; (ii) Leucogranito Velha Canadá, caracterizado pelos conteúdos mais elevados de SiO2, Fe2O3, TiO2, K2O, Rb, HFSE (Zr, Y e Nb), das razões K2O/Na2O, FeOt/(FeOt+MgO), Ba/Sr e Rb/Sr. Apresentam dois padrões distintos de ETR: (a) baixas à moderadas razões (La/Yb)N com anomalias negativas de Eu acentuadas; e (b) moderadas à altas razões (La/Yb)N, com anomalias negativas de Eu discretas e um padrão côncavo dos ETRP. Em diversos aspectos, as rochas do granito Velha Canadá mostram fortes afinidades com os leucogranitos potássicos tipo Xinguara e Mata Surrão do Domínio Rio Maria, assim como aqueles da região da Canaã dos Carajás e mais discretamente com os granitos de baixo Ca do Cráton Yilgarn. Para a origem das rochas do Leucogranodiorito Nova Canadá é admitida a hipótese de cristalização fracionada a partir de líquidos com afinidade sanukitóide, seguido por processos de mistura entre estes e líquidos de composição trondhjemítica, enquanto que para aquelas de alto K do Leucogranito Velha Canadá, acreditase na fusão parcial de metatonalitos tipo TTG em diferentes níveis crustais, para gerar líquidos com tais características; e (iii) associações trondhjemíticas com afinidade TTG de alto Al2O3, Na2O e baixo K2O, compatíveis com os granitoides arqueanos da série cálcioalcalina tonalítica-trondhjemítica de baixo potássio. Foram distinguidas duas variedades: (a) biotita-trondhjemito com estruturação marcada pelo desenvolvimento de feições que indicam atuação de pelo menos dois eventos deformacionais em estágios sin- a pós-magmáticos, como bandamentos composicionais, dobras e indícios de migmatização; e (b) muscovita ± biotita trondhjemito que é distinguido da variedade anterior pela presença da muscovita, saussuritização do plagioclásio, textura equigranular média e atuação discreta da deformação com o desenvolvimento de uma foliação E-W de baixo angulo. A primeira variedade destes litotipos, que ocorre predominantemente na porção norte, tem ocorrência restrita. Com intensa deformação e prováveis feições de anatexia (migmatitos) podem indicar que estas rochas tenham sido afetadas por um retrabalhamento crustal, ligado à geração dos leucogranitos dominantemente descritos na área. Os trondhjemitos do sul da área são mais enriquecidos em Fe2O3, MgO, TiO2, CaO, Zr, Rb, e na razão Rb/Sr em relação aos trondhjemitos da porção norte da área. Estas exibem ainda padrões fracionados de ETR, com variações nos conteúdos de ETRP, além da ausência de anomalias de Eu e Sr, e baixos conteúdos de Y e Yb. Tais feições são tipicamente atribuídas à magmas gerados por fusão parcial de uma fonte máfica em diferentes profundidades, com aumento da influência da granada no resíduo e a falta de plagioclásio tanto na fase residual como na fracionante. Em uma análise geral, a disposição dos trends geoquímicos evolutivos de ambas as variedades sugere que estas unidades não são comagmáticas. As afinidades geoquímicas entre as rochas da área de Nova Canadá com aquelas do Domínio Mesoarqueano Rio Maria, poderiam nos levar a entender a região de Nova Canadá como uma extensão do Rio Maria para norte, enquanto que para aquelas do Leucogranito Velha Canadá, que são mais jovens e geradas já no Neoarqueano, se descarta a idéia de associação com os mesmos eventos tectono-magmáticos que atuaram em Rio Maria.