926 resultados para microwave power transmission
Resumo:
A solar power satellite is paid attention to as a clean, inexhaustible large- scale base-load power supply. The following technology related to beam control is used: A pilot signal is sent from the power receiving site and after direction of arrival estimation the beam is directed back to the earth by same direction. A novel direction-finding algorithm based on linear prediction technique for exploiting cyclostationary statistical information (spatial and temporal) is explored. Many modulated communication signals exhibit a cyclostationarity (or periodic correlation) property, corresponding to the underlying periodicity arising from carrier frequencies or baud rates. The problem was solved by using both cyclic second-order statistics and cyclic higher-order statistics. By evaluating the corresponding cyclic statistics of the received data at certain cycle frequencies, we can extract the cyclic correlations of only signals with the same cycle frequency and null out the cyclic correlations of stationary additive noise and all other co-channel interferences with different cycle frequencies. Thus, the signal detection capability can be significantly improved. The proposed algorithms employ cyclic higher-order statistics of the array output and suppress additive Gaussian noise of unknown spectral content, even when the noise shares common cycle frequencies with the non-Gaussian signals of interest. The proposed method completely exploits temporal information (multiple lag ), and also can correctly estimate direction of arrival of desired signals by suppressing undesired signals. Our approach was generalized over direction of arrival estimation of cyclostationary coherent signals. In this paper, we propose a new approach for exploiting cyclostationarity that seems to be more advanced in comparison with the other existing direction finding algorithms.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The paper presents a method for transmission loss charge allocation in deregulated power systems based on Relative Electrical Distance (RED) concept. Based on RED between the generator and load nodes and the predefined bilateral power contracts, charge evaluation is carried out. Generally through some power exchange mechanism a set of bilateral contracts are determined that facilitate bilateral agreements between the generation and distribution entities. In this paper the possible charges incurred in meeting loads like generation charge, transmission charge and charge due to losses are evaluated. Case studies have been carried out on a few practical equivalent systems. Due to space limitation results for a sample 5 bus system are presented considering ideal load/generation power contracts and deviated load/generation power contracts. Extensive numerical testing indicates that the proposed allocation scheme produces loss allocations that are appropriate and that behave in a physically reasonable manner.
Resumo:
In this paper, a new approach to enhance the transmission system distance relay co-ordination is presented. The approach depends on the apparent impedance loci seen by the distance relay during all possible disturbances. In a distance relay, the impedance loci seen at the relay location is obtained by extensive transient stability studies. Support vector machines (SVMs), a class of patterns classifiers are used in discriminating zone settings (zone-1, zone-2 and zone-3) using the signals to be used by the relay. Studies on a sample 9-bus are presented for illustrating the proposed scheme.
Resumo:
The performance of a plate clutch in a two-inertia power transmission system is analysed assuming negligible compliance and using a piecewise linear function to represent the clutch torque characteristic. Expressions defining, for all linear segments of the clutch torque characteristic, dimensionless input and output velocities of the clutch and dimensionless slip period are presented. The use of these expressions in preparing design charts to aid analysis and design of the plate clutch is outlined.
Resumo:
Resonant microwave power absorption is examined for slabs exposed to TEM waves from both faces and for a slab placed on a reflecting support. Using the electric field distribution in the slab, the average power is obtained by integrating the spatially distributed power across the sample length. Due to constructive interference of the standing waves within the sample, the average power rises to a local maximum during a resonance. Irrespective of the material, resonances occur at integral values of L/lambda(s) when the slab is exposed to radiation from both faces and at L/lambda(s) = 0.5n-0.25 when placed on a reflecting support.
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.
Resumo:
The basic concepts of tuned half-wave lines were covered by Hubert and Gent [1]. In this paper the problem of overvoltages during faults and the stability of the system incorporating such tuned lines are discussed. The type of tuning bank and the line arrangements that will be satisfactory from the point of view of stability are suggested. The behavior of a line tuned by distributed capacitor is analyzed, and its performance is compared with the other type of tuned line.
Resumo:
This paper provides additional theoretical information on half-wave-length power transmission. The analysis is rendered more general by consideration of a natural half-wave line instead of a short line tuned to half-wave. The effects of line loading and its power factor on the voltage and current profiles of the line and ganerator excitation have been included. Some of the operating problems such as charging of the line and synchronization of the half-wave system are also discussed. The inevitability of power-frequency overvoltages during faults is established. Stability studies have indicated that the use of switching stations is not beneficial. Typical swing curves are also presented.
Intelligent Approach for Fault Diagnosis in Power Transmission Systems Using Support Vector Machines
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.
Resumo:
UHV power transmission lines have high probability of shielding failure due to their higher height, larger exposure area and high operating voltage. Lightning upward leader inception and propagation is an integral part of lightning shielding failure analysis and need to be studied in detail. In this paper a model for lightning attachment has been proposed based on the present knowledge of lightning physics. Leader inception is modeled based on the corona charge present near the conductor region and the propagation model is based on the correlation between the lightning induced voltage on the conductor and the drop along the upward leader channel. The inception model developed is compared with previous inception models and the results obtained using the present and previous models are comparable. Lightning striking distances (final jump) for various return stroke current were computed for different conductor heights. The computed striking distance values showed good correlation with the values calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The model is applied to a 1200 kV AC power transmission line and inception of the upward leader is analyzed for this configuration.