993 resultados para microwave heating


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead is present everywhere in the environment and has been defined as one of the greatest threats to the human health. In this paper, attempts have been made to study a way of recycling the lead produced from waste usage and disposed of in such a way as to avoid degrading the surrounding environment. In order to contain the waste, recycled asphalt material is mixed with the lead and then heated with microwave energy. This is an attempt to solidify and reduce the lead contaminants and use the final product as sub-base material in road pavement construction. The microwave heating of the specimens is carried out with 30%, 50%, 80% and 100% of power at 800W. The optimum power mode is used to compare with the conventional heating of asphalt with sulfur additive. The results are characterized by compact density, permeability, and subjected to toxicity test with regards to lead concentration. A mechanical test to evaluate the stability is also performed on the three methods of solidification and to prove that microwave zapping method allow to convert into an environmentally stable material for recycling without having to be deposited in a landfill site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical modelling of electromagnetic waves has been the focus of many research areas in the past. Some specific applications of electromagnetic wave scattering are in the fields of Microwave Heating and Radar Communication Systems. The equations that govern the fundamental behaviour of electromagnetic wave propagation in waveguides and cavities are the Maxwell's equations. In the literature, a number of methods have been employed to solve these equations. Of these methods, the classical Finite-Difference Time-Domain scheme, which uses a staggered time and space discretisation, is the most well known and widely used. However, it is complicated to implement this method on an irregular computational domain using an unstructured mesh. In this work, a coupled method is introduced for the solution of Maxwell's equations. It is proposed that the free-space component of the solution is computed in the time domain, whilst the load is resolved using the frequency dependent electric field Helmholtz equation. This methodology results in a timefrequency domain hybrid scheme. For the Helmholtz equation, boundary conditions are generated from the time dependent free-space solutions. The boundary information is mapped into the frequency domain using the Discrete Fourier Transform. The solution for the electric field components is obtained by solving a sparse-complex system of linear equations. The hybrid method has been tested for both waveguide and cavity configurations. Numerical tests performed on waveguides and cavities for inhomogeneous lossy materials highlight the accuracy and computational efficiency of the newly proposed hybrid computational electromagnetic strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of microwave heating technique for the acceleration of ortho ester Claisen rearrangement (a three step transformation) is described. Irradiation of a DMF solution of the allyl alcohol 5, triethyl orthoacetate and propionic acid (catalytic) in an Erlenmeyer flask for 10 minutes in a microwave oven generated the ester 8 in 83% yield. Analogously, ortho ester Claisen rearrangement of a variety of allyl and propargyl alcohols (9, 12-22) were achieved. The formation of the diester 10 from 2-butyne-1,4-diol (9) via the ortho ester Claisen rearrangement of two allyl alcohol moieties (involving sh steps) in 15 minutes, demonstrates the versatility of the microwave heating technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The review is concerned with models that analyze transport:processes that occur during microwave heating. Early models on microwave. heating used Lambert's law to describe the microwave power absorption. Over the last decade, models for transport processes have been developed with the microwave power derived from Maxwell's equations. Those models, primarily based on plane waves, have been used for analyzing microwave heating of solids, liquids, emulsions, microwave thawing and drying. The models illustrate phenomena such a resonances, hot spots, edge and runaway heating. The literature on microwave sintering, susceptor heating and microwave assisted synthesis is largely experimental in nature and only key issues are highlighted. To fully appreciate the models for microwave heating, a section on the theory of electromagnetic wave propagation is included, where expressions for the electric field in dielectric slabs and cylinders are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1D electric field and heat-conduction equations are solved for a slab where the dielectric properties vary spatially in the sample. Series solutions to the electric field are obtained for systems where the spatial variation in the dielectric properties can be expressed as polynomials. The series solution is used to obtain electric-field distributions for a binary oil-water system where the dielectric properties are assumed to vary linearly within the sample. Using the finite-element method temperature distributions are computed in a three-phase oil, water and rock system where the dielectric properties vary due to the changing oil saturation in the rock. Temperature distributions predicted using a linear variation in the dielectric properties are compared with those obtained using the exact nonlinear variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigate the dissociation behavior of natural gas hydrate in a closed system with microwave (MW) heating and hot water heating. The hydrate was formed at temperatures of 1-4 degrees C and pressures of 4.5-5.5 MPa. It was found that the gas hydrate dissociated more rapidly with microwave than with hot water heating. The rate of hydrate dissociation increased with increasing microwave power, and it was a function of microwave power. Furthermore, the temperature of the hydrate increased linearly with time during the microwave radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of NO by CH4 in the presence of excess O-2 over Co/HZSM-5, Ni/HZSM-5 and Mn/HZSM-5 catalysts with microwave heating was studied. By comparing the activities of the catalysts in the microwave heating mode with that in the conventional reaction mode, it was demonstrated that microwave heating could greatly reduce the reaction temperature, and could clearly expand the temperature window of the catalysts. Especially for the Co/HZSM-5 catalyst, the maximum conversion of NO to N-2 in the conventional reaction mode was consistent with that in the microwave heating mode. However, the temperature window for the maximum conversion in the microwave heating mode was from 260 to 360degreesC instead of a temperature of 420degreesC in the conventional reaction mode. The results suggest that microwave heating has a novel effect in the reduction of NO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic decomposition of NO was studied over Fe/NaZSM-5 catalyst. Novel results were observed with the microwave heating mode. The conversion of NO to N-2 increased remarkably with the increasing of Fe loading. The effects of a series of reaction parameters, including reaction temperature, O-2 concentration, NO concentration, gas flow rate and H2O addition, on the productivity of N-2 have been investigated. It is shown that the catalyst exhibited good endurance to excess O-2 in the microwave heating mode. Under all reaction conditions, NO converted predominantly to N-2. The highest conversion of NO to N-2 was up to 70%. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zeolite membranes with high permeance and separation factors are highly desirable for practical applications. Although, in the past, very good separation factors have been obtained, it has proved difficult to achieve a high permeance. Ken a comparative study of microwave versus conventional heating in the hydrothermal synthesis of NaA zeolite membranes is made. It is demonstrated that membranes prepared by microwave heating have not only a higher permeance but also a considerably shorter synthesis time. These observations are rationalized by examining the mechanism of membrane formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of NaA zeolite membrane on a porous alpha -Al2O3 support by microwave heating (MH) was investigated. The formation of a NaA zeolite membrane was drastically promoted by MH. The synthesis time was reduced from 3 h for conventional heating (CH) to 15 min for MH. Surface seeding cannot only promote the formation of NaA zeolite on the support, but also inhibit the transformation of NaA zeolite into other types of zeolites. The thickness of the NaA zeolite membrane synthesized by MH was about 4 mum, thinner than that of NaA zeolite membrane synthesized by CH. The permeance of NaA zeolite membrane synthesized by MH was four times higher than that of the NaA zeolite membrane synthesized by CH, while their permselectivities were comparable. Multi-stage synthesis resulted in the transformation of NaA zeolite into other types of zeolites, and the perfection of the as-synthesized membrane decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of temperature and moisture fields as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.