982 resultados para microscopic anatomy
Resumo:
The morphological characteristics of the oviduct of 12 sexually mature rheas (Rhea americana) were studied. Only the left oviduct is developed as a long tube with a length of 122 +/- 23.1 cm, and is subdivided into infundibulum (15.2 +/- 4.0 cm), magnum (63.3 +/- 9.4 cm), isthmus (5.6 +/- 3.1 cm), uterus (16.0 +/- 4.2 cm) and vagina (11.5 +/- 1.4 cm). The mucous membrane of the oviduct, as a whole, possesses luminal folds covered by ciliated columnar epithelium with secretory cells. The infundibulum part presents a cranial opening with thin and long fimbriae with few tubular glands in caudal tubular portion. In the magnum, the largest portion of the oviduct, the folds are thicker and are filled with tubular glands. The isthmus is short and presents less bulky folds and a few tubular glands. A bag-shaped uterus in the cranial area shows thin folds, and in the caudal region (shell gland) more ramified folds with few tubular glands. The vagina has long luminal folds and a thick muscular tunic; no glands with sperm-storage characteristics have been observed. In conclusion, the oviduct in sexually mature rhea has morphological similarities with the other species of birds already described; however it presents its own characteristics to produce a big egg.
Resumo:
Microfilmed for preservation
Resumo:
1971 ed. published under title: Surgical and microscopic anatomy of the temporal bone.
Resumo:
"Printed in Great Britain."
Resumo:
The nail unit is the largest and a rather complex skin appendage. It is located on the dorsal aspect of the tips of fingers and toes and has important protective and sensory functions. Development begins in utero between weeks 7 and 8 and is fully formed at birth. For its correct development, a great number of signals are necessary. Anatomically, it consists of 4 epithelial components: the matrix that forms the nail plate; the nail bed that firmly attaches the plate to the distal phalanx; the hyponychium that forms a natural barrier at the physiological point of separation of the nail from the bed; and the eponychium that represents the undersurface of the proximal nail fold which is responsible for the formation of the cuticle. The connective tissue components of the matrix and nail bed dermis are located between the corresponding epithelia and the bone of the distal phalanx. Characteristics of the connective tissue include: a morphogenetic potency for the regeneration of their epithelia; the lateral and proximal nail folds form a distally open frame for the growing nail; and the tip of the digit has rich sensible and sensory innervation. The blood supply is provided by the paired volar and dorsal digital arteries. Veins and lymphatic vessels are less well defined. The microscopic anatomy varies from nail subregion to subregion. Several different biopsy techniques are available for the histopathological evaluation of nail alterations.
Resumo:
In recent years, there has been an exponential increase in the so-called “new pets”, including the domestic guinea pig (Cavia porcellus) and the capybara (Hydrochoerus hydrochaeris), two closely related Caviid rodents native to South America. Both historically bred for food purposes, they have more recently become increasingly popular as pets in the European and American continents, respectively. This led to an increasing veterinary interest in deepening the knowledge regarding their normal anatomy, as a basic contribution to other fields of veterinary medicine, including diagnostic imaging, surgery, and pathological anatomy. Being part of a bilateral framework co-tutelage agreement leading to a joint Doctoral Degree between the Alma Mater Studiorum of Bologna, Italy and the Universidad Nacional del Litoral of Santa Fe, Argentina, this research project was partly carried out in Italy (study of guinea pigs) and partly in Argentina (study of capybaras). It consisted in the macroscopic study, through anatomical dissections of carcasses of both species as well as the use of anatomical casts, and in the histological study of the various systems in the two species, and was aimed at creating a gross and microscopic comparative anatomical atlas. From the gross and microscopic morphological and morphometrical anatomical study of the different system of the guinea pig and capybara, several analogies and differences emerged. The creation of a comparative anatomical atlas of gross and microscopic anatomy of the capybara and the guinea pig might prove useful for clinical, zootechnical and research purposes.
Resumo:
Aims To verify whether spectral components of atrial electrograms (AE) during sinus rhythm (SR) correlate with cardiac ganglionated plexus (GP) sites. Methods and results Thirteen patients undergoing atrial fibrillation (AF) ablation were prospectively enrolled. Prior to radio frequency application, endocardial AE were recorded with a sequential point-by-point approach. Electrical stimuli were delivered at 20 Hz, amplitude 100 V, and pulse width of 4 ms. A vagal response was defined as a high-frequency stimulation (HFS) evoked atrioventricular block or a prolongation of RR interval. Spectral analysis was performed on single AE during SR, sampling rate of 1000 Hz, Hanning window. Overall, 1488 SR electrograms were analysed from 186 different left atrium sites, 129 of them corresponding to negative vagal response sites, and 57 to positive response sites. The electrogram duration and the number of deflections were similar in positive and negative response sites. Spectral power density of sites with vagal response was lower between 26 and 83 Hz and higher between 107 and 200 Hz compared with negative response sites. The area between 120 and 170 Hz normalized to the total spectrum area was tested as a diagnostic parameter. Receiver operating characteristic curve analysis demonstrated that an area120-170/area(total) value >0.14 identified vagal sites with 70.9% sensitivity and 72.1% specificity. Conclusion Spectral analysis of AE during SR in sites that correspond to the anatomical location of the GP is feasible and may be a simpler method of mapping the cardiac autonomic nervous system, compared with the HFS technique.
Resumo:
The rat saphenous nerve contains only somato-sensory fibers and is used in investigations of neuropathic pain and its treatment. Due to its superficial anatomical path, the saphenous nerve is also widely used in electrophysiological studies. Nevertheless, morphologic and morphometric descriptions of the normal saphenous nerve are scanty in the literature and information on useful morphometric parameters of this nerve is still missing. Thus, the present study aimed to investigate the longitudinal and lateral symmetry of the saphenous nerve in young rats. Proximal and distal segments of the left and right saphenous nerves from female Wistar rats, aged 30 days (N = 5) were morphometrically evaluated and comparisons were made between sides and segments. Our results show that the saphenous nerve is longitudinally and laterally symmetric since there were no morphometric differences between proximal and distal segments, as well as between right and left sides. This lateral symmetry is important in order to validate those experiments in which the contralateral nerve is used as the control. Also, the longitudinal symmetry information is fundamental to further studies involving the ""dying back"" neuropathy models. The present study adds to the literature new morphometric information on the rat saphenous nerve that might be useful for a better interpretation of further studies involving this nerve and experimental models of nerve diseases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The microscopic anatomy of plants. A review of the main treatises on Plant Microscopic Anatomy and their translations published along the XX century is followed by a discussion on various aspects of the structure in plant cells, methodological questions and teminology. Problems related to using dry specimens from herbaria for microscopic studies are considered. As an example, a study has been made on a species named in memory of Prof. Dr. Oriol de Bolòs, Delphinium bolosii (BLANCHÉ and MOLERO, 1983).