184 resultados para microhabitats
Resumo:
Objetivou-se determinar o nível de disseminação de Ae. albopictus na região do Vale do Paraíba, Estado de São Paulo, Brasil. Foram realizadas coletas de larvas e pupas em seis locais distintos, segundo transecto com 10 km de extensão. O alvo principal foi oco de árvores, tendo sido também incluídos artefatos antrópicos. As espécies Ae. terrens e Ae. albopictus foram as únicas do gênero Aedes presentes e, algumas vezes, coexistiram no mesmo microhabitat natural. A segregação de sete espécies da comunidade de oco variou de acordo com os macro e microhabitats examinados. Assim, a distribuição de Ae. albopictus envolveu as zonas rural, rural-urbana e urbana, porém a segunda área foi a mais preferida. Como fator favorável à infestação de Ae. albopictus na região, destacou-se a vacância de nichos ecológicos naturais resultante da influência antrópica. As chuvas foram relevantes no "input" de larvas e pupas e os ocos, com volumes superiores a 600 ml, foram os mais produtivos. A abundância desses dois estádios ocorreu nas estações verão-outono, sendo o pico máximo alcançado nos meses de março-abril. Essa sazonalidade foi comum em bambu experimental e recipientes artificiais. Os dados de temperatura média sugeriram a faixa de 23 a 17°C como o período mais favorável ao desenvolvimento larvário. Face a isso, a cepa de Ae. albopictus estudada parece ser oriunda da Ásia tropical e, portanto, se reveste de elevada importância epidemiológica pela possibilidade dessa espécie vir a exercer, além do dengue, papel vetorial para a febre amarela no Brasil.
Resumo:
RESUMOEste trabalho visa preliminarmente estudar a irradiância total entre 300 e 1100 nm, assim como a razão vermelho-vermelho extremo que chegam ao solo de um trecho de floresta primária e de uma clareira. As áreas selecionadas estão localizadas numa região próxima a cidade de Tucurui, Estado do Pará, Brasil.
Resumo:
During two consecutive years, from January 1985 to December 1986, a comparative study of mosquitoes preferences for breeding habitat was carried out in the Atlantic Forest of the Serra do Mar, Paraná State, Brazil. To achieve it, 1875 bamboo internodes aligned vertically in live green, bamboo plants Merostachys speciosa Munro and Merostachys sp. were used, in which metabolic water was exuded from the plant itself, and presenting different size/pattern holes at their lateral walls, bored by the local sylvan fauna. Another group of 1200 individual internode traps was used as comparative element, carved out with a transversal cut by a saw, filled with local stream water and held in branches at different heights in the vegetal strata nearby. At both microhabitat types, a total of 17 culicid species was registered. Culex (Microculex) neglectus Lutz, 1904, Cx. (Carrollia) soperi Antunes & Lane, 1937, Sabethes (Sabethes) batesi Lane & Cerqueira, 1942 and Sa. (Sabethinus) melanonymphe (Dyar, 1924)colonized exclusively live plant internodes, while Culex (Microculex) elongatus Rozeboom & Lane, 1950, Cx. (Carrollia) iridescens (Lutz, 1905), Cx. (Carrollia) kompi Valencia,1973and Trichoprosopon (Trichoprosopon) soaresi Dyar & Knab, 1907 bred only in internode traps. The remaining nine species colonized both habitats indistinctly. Quantitatively, was detected the abundance of 60.1% at live green internodes, against 39.9% for internode traps. Concerning the different patterns of bored live internode holes, 40.3% of the total computed specimens were collected in square or rectangular holes, 31.9% in two hole internodes, one minute circular, the other wider, and the remaining 28.8% of specimens distributed in other pattern type internodes. The mosquitoes breeding at these microhabitats fall in the culicid entomofauna specialized at locating and detecting peculiar and propitious mesogen conditions for breeding purposes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lichens are very sensitive to habitat changes and their species richness is likely to decline under intensive land use. Currently, a comprehensive study analyzing lichen species richness in relation to land-use types, extending over different regions and including information on habitat variables, is missing for temperate grasslands. In three German regions we studied lichen species richness in 490 plots of 16 m2 representing different land-use types, livestock types, and habitat variables. Due to the absence of low-intensity pastures and substrates such as woody plants, deadwood and stones, there were no lichens in the 78 plots in Schorfheide-Chorin. In the two other regions, the richness of lichen species was 45 % higher in pastures than in meadows, and 77 % higher than in mown pastures, respectively. Among the pastures, the richness of all lichen species was on average 10 times higher in sheep-grazed pastures than in the ones grazed by cattle or horses. On average, the richness of all lichen species increased by 3.3 species per additional microhabitat. Furthermore, the richness of corticolous lichens increased by 1.2 species with 10 % higher cover of woody plants, lignicolous lichen species richness increased by 4.8 species with 1 % higher cover of deadwood, and saxicolous lichen species richness increased by 1.0 species with 1 % higher cover of stones. Our findings highlight the importance of low-intensity land use for lichen conservation. In particular, the degradation of grasslands rich in microhabitats and the destruction of lichen substrates by intensification, and conversion of unfertilized pastures formerly grazed at low intensity to meadows should be avoided to maintain lichen diversity.
Resumo:
Living (Rose Bengal stained) benthic foraminifera were collected with a multicorer from six stations between 2°N and 12°S off West Africa. The foraminiferal communities in the investigated area reflect the direct influence of different productivity regimes, and are characterized by spatially and seasonally varying upwelling activity. At five stations, foraminiferal abundance coincides well with the gradient of surface productivity. However, at one station off the Congo River, the influence of strong fresh water discharge is documented. Although this station lies directly in the center of an upwelling area, foraminiferal standing stocks are surprisingly low. It is suggested that the Congo discharge may induce a fractionation of the organic matter into small and light particles of low nutritional content, by contrast to the relatively fast-sinking aggregates found in the centers of high productivity areas. Quality and quantity of the organic matter seem to influence the distribution of microhabitats as well. The flux of organic carbon to the sea-floor controls the sequence of degradation of organic matter in sediment and the position of different redox fronts. The vertical foraminiferal stratification within sediment closely parallels the distribution of oxygen and nitrate in porewater, and reflects different nutritive strategies and adaptation to different types of organic matter. The epifauna and shallow infauna colonize oxygenated sediments where labile organic matter is available. The intermediate infauna (M. barleeanum) is linked to the zone of nitrate reduction in sediments where epifaunal and shallow infaunal species are not competitive anymore, and must feed on bacterial biomass or on metabolizable nutritious particles produced by bacterial degradation of more refractory organic matter. The deep infauna shows its maximum distribution in anoxic sediments, where no easily metabolizable organic matter is available.
Resumo:
1. The often complex architecture of coral reefs forms a diversity of light microhabitats. Analogous to patterns in forest plants, light variation may drive strategies for efficient light utilization and metabolism in corals. 2. We investigated the spatial distribution of light regimes in a spur-and-groove reef environment and examine the photophysiology of the coral Montipora monasteriata (Forskal 1775), a species with a wide habitat distribution. Specifically, we examined the variation in tissue and skeletal thickness, and photosynthetic and metabolic responses among contrasting light microhabitats. 3. Daily irradiances reaching corals in caves and under overhangs were 1-5 and 30-40% of those in open habitats at similar depth (3-5 m), respectively. Daily rates of net photosynthesis of corals in cave habitats approximated zero, suggesting more than two orders of magnitude variation in scope for growth across habitats. 4. Three mechanisms of photoadaptation or acclimation were observed in cave and overhang habitats: (1) a 20-50% thinner tissue layer and 40-60% thinner skeletal plates, maximizing light interception per unit mass; (2) a two- to threefold higher photosynthetic efficiency per unit biomass; and (3) low rates of dark respiration. 5. Specimens from open and cave habitats displayed a high capacity to acclimate to downshifts or upshifts in irradiance, respectively. However, specimens in caves displayed limited acclimation to further irradiance reduction, indicating that these live near their irradiance limit. 6. Analogous to patterns for some plant species in forest gaps, the morphological plasticity and physiological flexibility of M. monasteriata enable it to occupy light habitats that vary by more than two orders of magnitude.
Resumo:
In the years 2002, 2003 and 2004 we collected samples of macroinvertebrates on a total of 36 occasions in Badacsony bay, in areas of open water (in the years 2003 and 2004 reed-grassy) as well as populated by reed (Phragmites australis) and cattail (Typha angustifolia). Samples were taken using a stiff hand net. The sampling site includes three microhabitats differentiated only by the aquatic plants inhabiting these areas. Our data was gathered from processing 208 individual samples. The quantity of macroinvertebrates is represented by biovolume value based on volume estimates. We can identify taxa in abundant numbers found in all water types and ooze; as well as groups associated with individual microhabitats with various aquatic plants. We can observe a notable difference between the years in the volume of invertebrate macrofauna caused by the drop of water level, and the multiplication of submerged macrophytes. There are smaller differences between the samples taken in reeds and cattail stands. In the second half of 2003 – which was a year of drought – the Najas marina appeared in open waters and allowed to support larger quantities of macroinvertebrates. In 2004 with higher water levels, the Potamogeton perfoliatus occurring in the same area has had an even more significant effect. This type of reed-grass may support the most macroinvertebrates during the summer. From the aspect of diversity relations we may suspect different characteristics. The reeds sampling site proved to be the richest, while the cattail microhabitat is close behind, open water (with submerged macrophytes) is the least diverse microhabitat.
Resumo:
Oribatid mites are one of the most abundant groups of the ground-dwelling mesofauna. They can be found in almost every terrestrial habitat all over the world and they are characterized by great species richness and great number of individuals. In spite of that not enough is known about their behaviour on community level and their spatial and temporal pattern in different habitats of the world. In our present study the seasonal behaviour of oribatid mite communities was analysed in three types of microhabitats in a temperate deciduous forest: in leaf litter, soil and moss. Samples were collected at a given site in a year and a half and the oribatid mite communities living there were studied on genus level along with the changes of meteorological factors characteristic of the area. The results show that corresponding to similar previous researches, the communities in our study do not have a seasonally changing, returning pattern either. Based on this, we can conclude that climatic differences and differences in other seasonally changing factors between the seasons do not have a significant role in the annual change of communities. Besides that we discovered that the communities of the three microhabitats are not completely the same. It is the oribatid mite community of the moss which differs mostly from communities in the leaf litter and in the soil. Our study calls attention among others to the fact that compositional changes of the oribatid mite communities living all over the world and their causes are unclear to date.
Resumo:
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.
Resumo:
The aim of this study was to evaluate the effect of Tecoma stans L. Juss. ex Kunth seeds mass on initial emergence, growth and, seedling development under different light conditions. The seeds were separated in four mass classes and sowed in four replicates of 24 seeds for each class, under full sun and canopy shade. Under sun environment was observed a greater percentage of emergence. Heavy seeds presented the greater percentage of emergence under both environments, but a greater rate was observed under canopy shade. One month after the start of experiments, the seedlings at the shade environment presented 100% of mortality. The growth and development seedlings under full sun were noticed for five months. In this period, only in the first three months was possible to observe the effects of Tecoma stans seeds mass on capacity of seedlings to acquire dry mass. The seedlings biomass partitions were similar among the tested mass class. The seedlings of smaller mass tended to a high specific leaf area in relation to the seedlings from large seeds, mainly in the first three months, resulting in a great acquisition of dry mass by these seedlings. In the fourth month, the specific leaf area did not present any tendency. Because the biggest seeds to give rise seedlings with best initial development than smallest seeds can be considered as species reproductive strategy. To produce seeds of different sizes also can be considered as way of species to spread in many microhabitats.
Resumo:
Simopelta minima (Brandão, 1989) was originally described based on four workers collected in soil samples from a small cocoa plantation in Ilhéus, state of Bahia, northeastern Brazil. In the subsequent years after the description, this cocoa plantation was eliminated and the species was then considered extinct by the Brazilian environmental institutions. The recent rediscovery of S. minima workers in subterranean pitfall trap samples from Viçosa, state of Minas Gerais, southeastern Brazil, over 1.000 km distant from type locality, suggests that the rarity and vulnerability status of some ant species may be explained by insufficient sampling of adequate microhabitats, in time and space.
Resumo:
The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondonia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of NH4+, Na+, K+, Ca2+ Mg2+,, Cl-, NO3-, SO42- and DOC. The coefficient 3 4 cient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly tow compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall. patterns was Low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of ""hot"" and ""cold"" spots of throughfall. quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition -induced biochemical microhabitats in the soil. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The terrestrial carnivorous bladderwort, Utricularia uliginosa Vahl. (Lentibulariaceae) was studied to determine the species assemblage present in traps of these plants in situ across four sites over 15 months. The immediate soil environment was also sampled to determine the fauna present, and to compare the fauna present in traps with the fauna in the environment. The soil fauna consisted of 10 taxon types, which occupied either pelagic, epibenthic or interstitial microhabitats. All were found in traps of U. uliginosa, with the main prey being interstitial taxa followed by epibenthic and occasionally pelagic taxa. Numbers of individuals of the two most abundant soil taxa (nematodes, Elaphoidella) varied independently across the four sites over the 15 months of the study, as did numbers of Elaphoidella in the traps of U. uliginosa. Numbers of nematodes in the traps of U. uliginosa showed significant differences among sites, but not differences among times. Comparison of the trap fauna with the soil fauna revealed differences in relative abundance between soil samples and trap samples for two of the three taxa examined. There was an under-representation of nematodes in the traps relative to numbers in surrounding soil. There was an over-representation of the copepod Elaphoidella in the traps of U. uliginosa relative to numbers in soil at some of the times of sampling. Acarina were equally abundant in soil and trap samples. The patterns observed for Elaphoidella and nematodes may be due to selectivity in trapping by U. uliginosa, and/or differences in digestibility of the prey. Elaphoidella individuals were found to be attracted to U. uliginosa in a behavioural experiment. This may contribute to the over-representation of Elaphoidella in the traps of U. uliginosa in the field.