21 resultados para microgels
Resumo:
Gellan microgels with potential application in delivery systems were obtained by physically cross-linked gellan gum. The microgels were produced by atomization followed by ionotropic gelation using CaCl2 (gellan/Ca) or KCl (gellan/K) as hardening agent and part of them were coated with chitosan in order to improve their resistance to gastric digestion. Size distribution, morphology and zeta potential of microgels were evaluated before and after in vitro digestion process. The long term stability was also evaluated. Spherical microparticles were obtained at gellan concentration above 0.6% w/w, showing average size among 70-120 μm. Most of the coated and uncoated microgels showed stability in aqueous media, except the uncoated gellan/K microgel. The in vitro digestion evaluation showed that all particles maintained their size and shape after the gastric digestion step. However, the enteric digestion caused disintegration of microgels indicating their potential application for enteric delivery systems. The chitosan-coated microgels showed lower degree of fragmentation when compared to the uncoated microgels, indicating that the coating process enable a better control of microgels releasing properties during the enteric digestion.
Resumo:
Materials engineering focuses on the assembly of materials´ properties to design new products with the best performance. By using sub-micrometer size materials in the production of composites, it is possible to obtain objects with properties that none of their compounds show individually. Once three-dimensional materials can be easily customized to obtain desired properties, much interest has been paid to nanostructured poly-mers in order to build biocompatible devices. Over the past years, the thermosensitive microgels have become more common in the framework of bio-materials with potential applicability in therapy and/or diagnostics. In addition, high aspect ratio biopolymers fibers have been produced using the cost-effective method called electrospinning. Taking advantage of both microgels and electrospun fibers, surfaces with enhanced functionalities can be obtained and, therefore employed in a wide range of applications. This dissertation reports on the confinement of stimuli-responsive microgels through the colloidal electro-spinning process. The process mainly depends on the composition, properties and patterning of the precur-sor materials within the polymer jet. Microgels as well as the electrospun non-woven mats were investigated to correlate the starting materials with the final morphology of the composite fibers. PNIPAAm and PNIPAAm/Chitosan thermosensitive microgels with different compositions were obtained via surfactant free emulsion polymerization (SFEP) and characterized in terms of chemical structure, morphology, thermal sta-bility, swelling properties and thermosensitivity. Finally, the colloidal electrospinning method was carried out from spinning solutions composed of the stable microgel dispersions (up to a concentration of about 35 wt. % microgels) and a polymer solution of PEO/water/ethanol mixture acting as fiber template solution. The confinement of microgels was confirmed by Scanning Electron Microscopy (SEM). The electrospinning process was statistically analysed providing the optimum set of parameters aimed to minimize the fiber diameter, which give rise to electrospun nanofibers of PNIPAAm microgels/PEO with a mean fiber diameter of 63 ± 25 nm.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thiol-bearing microgels have been synthesised from copolymerisation of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate, and subsequent deprotection using sodium thiomethoxide. The concentration of thiol groups on these microgels could be tailored by use of different molar ratios of the two monomers. These thiol-bearing microgels were shown to adhere to ex vivo porcine urinary bladder, which was correlated with their level of thiolation. By simply mixing solutions of thiol-bearing microgels and doxorubicin, high levels of drug loading into the microgels could be achieved. Thiol-bearing microgels controlled the release of doxorubicin in a time-dependent manner over several hours. These doxorubicin-loaded thiol-bearing microgels could have application in the treatment of early-stage bladder cancers. The method used represents a new ‘bottom-up’ approach for the synthesis of novel mucoadhesive microgels.
Resumo:
A new family of multifunctional scaffolds, incorporating selected biopolymer coatings on basic Bioglass® derived foams has been developed. The polymer coatings were investigated as carrier of vancomycin which is a suitable drug to impart antibiotic function to the scaffolds. It has been proved that coating with PLGA (poly(lactic-co-glycolic acid)) with dispersed vancomycin-loaded microgels provides a rapid delivery of drug to give antibacterial effects at the wound site and a further sustained release to aid mid to long-term healing. Furthermore, the microgels also improved the bioactivity of the scaffolds by acting as nucleation sites for the formation of HA crystals in simulated body fluid. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A novel transition temperature in MeAM copolymer microgels is reported. Despite the fact that MeAM homopolymers do not show thermosensitive properties, a specific synthetic strategy leads to a thermo-responsive swelling behavior that could be potentially useful in medical and/or industrial applications. The pH and temperature-dependent swelling response of microgels of MeAM copolymerized with 2-aminomethylpyridine and ethylenediamine is reported. The changes in particle sizes, which depend on the nature of the surrounding environment, are recorded by QELS. The relation between copolymer structure and its novel behavior is analyzed by several techniques (1H NMR, TGA).
Resumo:
Colloidal nanosized folate-conjugated hydrogels for targeted chemotherapy were prepared via a versatile and efficient postsynthetic modification pathway starting from P(NPA-co-NIPAM). The modifications included the introduction of 4-methylpyridine as pH-sensitive pendant groups and the conjugation of folic acid to the microgel network. The microgels showed a specific swelling at pH?6 (endosomes) as judged by DLS studies varying the external pH. The relative composition of the microgels shows a clear influence on the pH volume transition shifting. The potential of the microgels for anticancer drug release at pH?=?5.0 was confirmed. Therefore, they are a promising targeting carrier for improved anticancer chemotherapy.
Resumo:
Alginate microgels are widely used as delivery systems in food, cosmetics, and pharmaceutical industries for encapsulation and sustained release of hydrophilic compounds and cells. However, the encapsulation of lipophilic molecules inside these microgels remains a great challenge because of the complex oil-core matrix required. The present study describes an original two-step approach allowing the easy encapsulation of several oil microdroplets within alginate microgels. In the first step, stable oil microdroplets were formed by preparing an oil-in-water (O/W) Pickering emulsion. To stabilize this emulsion, we used two solid particles, namely the cotton cellulose nanocrystals (CNC) and calcium carbonate (CaCO3). It was observed that the surface of the oil microdroplets formed was totally covered by a CNC layer, whereas CaCO3 particles were adsorbed onto the cellulose layer. This solid CNC shell efficiently stabilized the oil microdroplets, preventing them from undesired coalescence. In the second step, oil microdroplets resulting from the Pickering emulsion were encapsulated within alginate microgels using microfluidics. Precisely, the outermost layer of oil microdroplets composed of CaCO3 particles was used to initiate alginate gelation inside the microfluidic device, following the internal gelation mode. The released Ca2+ ions induced the gel formation through physical cross-linking with alginate molecules. This innovative and easy to carry out two-step approach was successfully developed to fabricate monodisperse alginate microgels of 85 pm in diameter containing around 12 oil microdroplets of 15 mu m in diameter. These new oil-core alginate microgels represent an attractive system for encapsulation of lipophilic compounds such as vitamins, aroma compounds or anticancer drugs that could be applied in various domains including food, cosmetics, and medical applications.
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioengenharia (MIT)
Resumo:
The photoviscosity effect in aqueous solutions of novel poly(4-methacryloyloxyazobenzene-co-N,N-dimethyl acrylamide) (MOAB-DMA) was demonstrated. The observed significant reduction in the zero-shear viscosity upon UV-irradiation of MOAB-DMA aqueous solutions was due to the dissociation of the interchain azobenzene aggregates. Such phenomena can be advantageously used in photoswitchable fluidic devices and in protein separation. Introduction of enzymatically degradable azo cross-links into Pluronic-PAA microgels allowed for control of swelling due to degradation of the cross-links by azoreductases from the rat intestinal cecum. Dynamic changes in the cross-link density of stimuli-responsive microgels enable novel opportunities for the control of gel swelling, of importance for drug delivery and microgel sensoric applications.
Resumo:
Colloidal nanoparticles are additives to improve or modify several properties of thermoplastic or elastic polymers. Usually colloid-polymer mixtures show phase separation due to the depletion effect. The strategy to overcome this depletion demixing was to prepare surface-modified colloidal particles, which can be blended with linear polymer chains homogeneous. A successful synthesis strategy for the preparation of hairy nanospheres was developed by grafting polystyrene macromonomer chains onto polyorganosiloxane microgels. The number of hairs per particle with a core radius of approximately 10nm exceeded 150 hairs in all cases. The molecular weight of the hairs variied between 4000-18000g/mol.The compatibility of these hairy spheres mixed with linear polymer chains was investigated by AFM, TEM and SAXS. Homogeneous mixtures were found if the molecular weight of the polymer hairs on the particle surface is at least as large as the molecular weight of the matrix chains. If the chains are much shorter than the hairs, the colloidal hair corona is strongly swollen by the matrix polymer, leading to a long-range soft interparticle repulsion ('wet brush'). If hairs and chains are comparable in length, the corona shows much less volume swelling, leading to a short-range repulsive potential similar to hard sphere systems ('dry brush'). Polymerketten und Kolloidpartikel entmischen aufgrund von Depletion-Wechselwirkungen. Diese entropisch bedingte Entmischung konnte durch das Ankoppeln von Polymerhaaren verschiedenen Molekulargewichts auf die Kugeloberflächen der Kolloide bis zu hohen Konzentrationen vermieden werden. Zur Darstellung sphärischer Bürsten und haariger Tracerpartikel wurde eine neue Synthesestrategie ausgearbeitet und erfolgreich umgesetzt.Das Kompatibilitätsverhalten dieser sphärischen Bürsten in der Schmelze von Polymerketten als Matrix wurde mittels Elektronenmikroskopie und Kleinwinkelröntgenstreuung untersucht. Die Mischungen setzten sich aus sphärischen Bürsten und Matrixketten mit unterschiedlichen Molekulargewichten zusammen.Es zeigte sich, daß die Mischbarkeit entschieden durch das Verhältnis von Haarlänge zu Länge der Matrixketten beeinflußt wird.Aus den Untersuchungen des Relaxationsverhaltens mittels Rheologie und SAXS ergibt sich, daß das Konzept der 'dry brush'- und 'wet brush'-Systeme auf diese Mischungen übertragbar ist. Die Volumenquellung der Haarcorona durch die Matrixketten ist, wie die Experimente gezeigt haben, bereits im Fall von Polymeren mit relativ niedrigen Molekulargewichten zu beobachten. Sie ist umso stärker ausgeprägt, je größer das Längenverhältnis zwischen Polymerhaaren und Matrixketten ist. Die Quellung bedeutet eine Vergrößerung des effektiven Radius der Partikel und entspricht somit einer Erhöhung des effektiven Volumenbruchs. Dies führt zur Ausbildung einer höheren Ordnung und zu einem Einfrieren der Relaxation dieser strukturellen Ordnung führt.
Resumo:
Einfluß der internen Architektur von Polymermikronetzwerken auf Struktur und Dynamik konzentrierter Kolloid-Dispersionen Kugelförmige Polymermikronetzwerk-Kolloide gehören zur Klasse der sogenannten Mikrogele. Dabei handelt es sich um kolloidale Modellsysteme, die durch ihre interne Vernetzungsdichte charakterisiert werden.In dieser Arbeit sollte untersucht werden, ob sich die Wechselwirkungen zwischen den Mikrogel-Kolloiden über ein repulsives Potential der Form U(r) = 1/rn beschreiben lassen und ob der Poten-tialexponent n von der Vernetzungsdichte abhängt. Dazu wurden vor allem die innere Architektur, das Phasenverhalten und der statische Strukturfaktor 1:10, 1:50, 1:72 und 1:100 vernetzter Polymer-Mikronetzwerk-Kolloide bis in den Bereich hochkonzentrierter Dispersionen mit den Mitteln der Kleinwinkelneutronenstreuung, der Digitalphotographie und der statischen Lichtstreuung untersucht. Polymeranalytische Untersuchungen ergaben einen bei der Synthese anfallenden Anteil von unver-netztem, freiem Polymer innerhalb der Mikronetzwerke, welcher sich beim Lösen aus den Netzwerken herausbewegte. Das freie Polymer spielte vor allem beim Phasenverhalten der untersuchten Teilchen eine große Rolle und verursachte bei den Untersuchungen der statischen Strukturfaktoren Abweichun-gen vom 'harte Kugel'-Verhalten. Als Ergebnis der Kleinwinkel-Neutronenstreuung konnte eine ab-nehmende Verteilungsdichte der Vernetzer innerhalb der Polymermikronetzwerke in Richtung der -Teilchenoberfläche nachgewiesen werden. Die damit verbundene Konformationsfreiheit der Polymer-segmente auf der Teilchenoberfläche (bis hin zu 'mushroom'-Strukturen) wurde als Grund dafür an-gesehen, daß sich die Resultate der untersuchten Mikrogele aller Vernetzungsdichten im wesentlichen auf 'harte Kugeln' skalieren lassen.
Resumo:
Der Fokus dieser Arbeit liegt in dem Design, der Synthese und der Charakterisierung neuartiger photosensitiver Mikrogele und Nanopartikel als potentielle Materialien für Beladungs- und Freisetzungsanwendungen. Zur Realisierung dieses Konzepts wurden verschiedene Ansätze untersucht.Es wurden neuartige niedermolekulare lichtspaltbare Vernetzermoleküle auf der Basis von o-Nitrobenzylderivaten synthetisiert, charakterisiert und zur Herstellung von photosensitiven PMMA und PHEMA Mikrogelen verwendet. Diese sind unter Bestrahlung in organischen Lösungsmitteln quellbar und zersetzbar. Durch die Einführung anionischer MAA Gruppen in solche PHEMA Mikrogele wurde dieses Konzept auf doppelt stimuliresponsive p(HEMA-co-MAA) Mikrogele erweitert. Hierbei wurde ein pH-abhängiges Quellbarkeitsprofil mit der lichtinduzierten Netzwerkspaltung in wässrigen Medien kombiniert. Diese duale Sensitivität zu zwei zueinander orthogonalen Reizen stellt ein vielversprechendes Konzept zur Kombination einer pH-abhängigen Beladung mit einer lichtinduzierten Freisetzung von funktionellen Substanzen dar. Desweiteren wurden PAAm Mikrogele entwickelt, welche sowohl eine Sensitivität gegenüber Enzymen als auch Licht aufweisen. Dieses Verhalten wurde durch die Verwendung von (meth-)acrylatfunktionalisierten Dextranen als polymere Vernetzungsmoleküle erreicht. Das entsprechende stimuliresponsive Profil basiert auf der enzymatischen Zersetzbarkeit der Polysaccharid-Hauptkette und der Anbindung der polymerisierbaren Vinyleinheiten an diese über photospaltbare Gruppen. Die gute Wasserlöslichkeit der Vernetzermoleküle stellt einen vielversprechenden Ansatz zur Beladung solcher Mikrogele mit funktionellen hydrophilen Substanzen bereits während der Partikelsynthese dar. Ein weiteres Konzept zur Beladung von Mikrogelen basiert auf der Verwendung von photolabilen Wirkstoff-Mikrogel Konjugaten. In einem ersten Schritt zur Realisierung solch eines Ansatzes wurde ein neuartiges Monomer entwickelt. Hierbei wurde Doxorubicin über eine lichtspaltbare Gruppe an eine polymerisierbare Methacrylatgruppe angebunden. Für die Freisetzung hydrophober Substanzen in wässrigen Medien wurden polymere Photolack-Nanopartikel entwickelt, welche sich unter Bestrahlung in Wasser zersetzen. Die lichtinduzierte Änderung der Hydrophobizität des Polymers ermöglichte die Freisetzung von Nilrot durch das Auflösen der partikulären Struktur. Ein interessanter Ansatz zur Verhinderung einer unkontrollierten Freisetzung funktioneller Substanzen aus Mikrogelen ist die Einführung einer stimuliresponsiven Schale. In diesem Kontext wurden Untersuchungen zur Bildung von nicht-stimulisensitiven Schalen um vorgefertigte Mikrogelkerne und zur Synthese von Hydrogelkernen in vorgefertigten polymeren Schalen (Nanokapseln) durchgeführt.