65 resultados para microbicide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine.

Study design: Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices.

Results: A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm.

Conclusions: The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. © 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Combination microbicide vaginal rings may be more effective than single microbicide rings at reducing/preventing sexual transmission of HIV. Here, we report the preclinical development and macaque pharmacokinetics of matrix-type silicone elastomer vaginal rings containing dapivirine and darunavir.

Methods: Macaque rings containing 25 mg dapivirine, 300 mg darunavir and 100 mg dapivirine, and 300 mg darunavir were manufactured and characterised by differential scanning calorimetry. In vitro release was assessed into isopropanol/water and simulated vaginal fluid. Macaque vaginal fluid and blood serum concentrations for both antiretrovirals were measured during 28-day ring use. Tissue levels were measured on day 28. Ex vivo challenge studies were performed on vaginal fluid samples and IC50 values calculated.

Results: Darunavir caused a concentration-dependent reduction in the dapivirine melting temperature in both solid drug mixes and in the combination ring. In vitro release from rings was dependent on drug loading, the number of drugs present, and the release medium. In macaques, serum concentrations of both microbicides were maintained between 101–102 pg/mL. Vaginal fluid levels ranged between 103–104 ng/g and 104–105 ng/g for dapivirine and darunavir, respectively. Tissue concentrations ranges for each drug were: vagina (1.8×103–3.8×103 ng/g) > cervix (9.4×101–3.9×102 ng/g) > uterus (0–108 ng/g) > rectum (0–40 ng/g). Measured IC50 values were > 2 ng/mL for both compounds.

Conclusions: Based on these results, and in light of recent clinical progress of the 25mg dapivirine ring, a combination vaginal ring containing dapivirine and darunavir is a viable second-generation HIV microbicide candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaginal rings (VRs) are flexible, torus-shaped, polymeric devices designed to sustain delivery of pharmaceutical drugs to the vagina for clinical benefit. Following first report in a 1970 patent application, several steroid-releasing VR products have since been marketed for use in hormone replacement therapy and contraception. Since 2002, there has been growing interest in the use of VR technology for delivery of drugs that can reduce the risk of sexual acquisition of human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). Although no vaginally-administered product has yet been approved for HIV reduction/prevention, extensive research efforts are continuing and a number of VR devices offering sustained release of so-called ‘HIV microbicide’ compounds are currently being evaluated in late-stage clinical studies. This review article provides an overview of the published scientific literature within this important field of research, focusing primarily on articles published within peer-reviewed journal publications. Many important aspects of microbicide-releasing VR technology are discussed, with a particular emphasis on the technological, manufacturing and clinical challenges that have emerged in recent years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new drug delivery method for infants is presented which incorporates an active pharmaceutical ingredient (API)-loaded insert into a nipple shield delivery system (NSDS). The API is released directly into milk during breastfeeding. This study investigates the feasibility of using the NSDS to deliver the microbicide sodium dodecyl sulfate (SDS), with the goal of preventing mother-to-child transmission (MTCT) of HIV during breastfeeding in low-resource settings, when there is no safer alternative for the infant but to breastfeed. SDS has been previously shown to effectively inactivate HIV in human milk. An apparatus was developed to simulate milk flow through and drug release from a NSDS. Using this apparatus milk was pulsed through a prototype device containing a non-woven fiber insert impregnated with SDS and the microbicide was rapidly released. The total SDS release from inserts ranged from 70 to 100% of the average 0.07 g load within 50 ml (the volume of a typical breastfeed). Human milk spiked with H9/HIVIIIB cells was also passed through the same set-up. Greater than 99% reduction of cell-associated HIV infectivity was achieved in the first 10 ml of milk. This proof of concept study demonstrates efficient drug delivery to breastfeeding infants is achievable using the NSDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of new HIV-1 infections are transmitted sexually by penetrating the mucosal barrier to infect target cells. The development of microbicides to restrain heterosexual HIV-1 transmission in the past two decades has proven to be a challenging endeavor. Therefore, better understanding of the tissue environment in the female reproductive tract may assist in the development of the next generation of microbicides to prevent HIV-1 transmission. In this review, we highlight the important factors involved in the heterosexual transmission of HIV-1, provide an update on microbicides' clinical trials, and discuss how different delivery platforms and local immunity may empower the development of next generation of microbicide to block HIV-1 transmission in the female reproductive tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contraceptive diaphragms offer a discreet method of pregnancy protection that women can use when needed with no side effects. Incorporating antiretroviral HIV microbicides into such devices may also provide protection against HIV infection. The paper gives a brief outline of the work being conducted by PATH, CONRAD and QUB on the development of a microbicide-releasing SILCS diaphragm. The design, engineering and manufacturing challenges that have been encountered will be discussed, as well as the potential impact such a device could have in the developing world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was supported by the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 305316 as part of the MOTIF (Microbicides Formulation Through Innovative Formulation for Vaginal and Rectal Delivery) project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was supported by the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 305316 as part of the MOTIF (Microbicides Formulation Through Innovative Formulation for Vaginal and Rectal Delivery) project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new modality for preventing HIV transmission is emerging in the form of topical microbicides. Some clinical trials have shown some promising results of these methods of protection while other trials have failed to show efficacy. Due to the relatively novel nature of microbicide drug transport, a rigorous, deterministic analysis of that transport can help improve the design of microbicide vehicles and understand results from clinical trials. This type of analysis can aid microbicide product design by helping understand and organize the determinants of drug transport and the potential efficacies of candidate microbicide products.

Microbicide drug transport is modeled as a diffusion process with convection and reaction effects in appropriate compartments. This is applied here to vaginal gels and rings and a rectal enema, all delivering the microbicide drug Tenofovir. Although the focus here is on Tenofovir, the methods established in this dissertation can readily be adapted to other drugs, given knowledge of their physical and chemical properties, such as the diffusion coefficient, partition coefficient, and reaction kinetics. Other dosage forms such as tablets and fiber meshes can also be modeled using the perspective and methods developed here.

The analyses here include convective details of intravaginal flows by both ambient fluid and spreading gels with different rheological properties and applied volumes. These are input to the overall conservation equations for drug mass transport in different compartments. The results are Tenofovir concentration distributions in time and space for a variety of microbicide products and conditions. The Tenofovir concentrations in the vaginal and rectal mucosal stroma are converted, via a coupled reaction equation, to concentrations of Tenofovir diphosphate, which is the active form of the drug that functions as a reverse transcriptase inhibitor against HIV. Key model outputs are related to concentrations measured in experimental pharmacokinetic (PK) studies, e.g. concentrations in biopsies and blood. A new measure of microbicide prophylactic functionality, the Percent Protected, is calculated. This is the time dependent volume of the entire stroma (and thus fraction of host cells therein) in which Tenofovir diphosphate concentrations equal or exceed a target prophylactic value, e.g. an EC50.

Results show the prophylactic potentials of the studied microbicide vehicles against HIV infections. Key design parameters for each are addressed in application of the models. For a vaginal gel, fast spreading at small volume is more effective than slower spreading at high volume. Vaginal rings are shown to be most effective if inserted and retained as close to the fornix as possible. Because of the long half-life of Tenofovir diphosphate, temporary removal of the vaginal ring (after achieving steady state) for up to 24h does not appreciably diminish Percent Protected. However, full steady state (for the entire stromal volume) is not achieved until several days after ring insertion. Delivery of Tenofovir to the rectal mucosa by an enema is dominated by surface area of coated mucosa and whether the interiors of rectal crypts are filled with the enema fluid. For the enema 100% Percent Protected is achieved much more rapidly than for vaginal products, primarily because of the much thinner epithelial layer of the mucosa. For example, 100% Percent Protected can be achieved with a one minute enema application, and 15 minute wait time.

Results of these models have good agreement with experimental pharmacokinetic data, in animals and clinical trials. They also improve upon traditional, empirical PK modeling, and this is illustrated here. Our deterministic approach can inform design of sampling in clinical trials by indicating time periods during which significant changes in drug concentrations occur in different compartments. More fundamentally, the work here helps delineate the determinants of microbicide drug delivery. This information can be the key to improved, rational design of microbicide products and their dosage regimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immune system in the female reproductive tract (FRT) does not mount an attack against HIV or other sexually transmitted infections (STI) with a single endogenously produced microbicide or with a single arm of the immune system. Instead, the body deploys dozens of innate antimicrobials to the secretions of the female reproductive tract. Working together, these antimicrobials along with mucosal antibodies attack many different viral, bacterial and fungal targets. Within the FRT, the unique challenges of protection against sexually transmitted pathogens coupled with the need to sustain the development of an allogeneic fetus have evolved in such a way that sex hormones precisely regulate immune function to accomplish both tasks. The studies presented in this review demonstrate that estradiol and progesterone secreted during the menstrual cycle act both directly and indirectly on epithelial cells and other immune cells in the reproductive tract to modify immune function in a way that is unique to specific sites throughout the FRT. As presented in this review, studies from our laboratory and others demonstrate that the innate immune response is under hormonal control, varies with the stage of the menstrual cycle, and as such is suppressed at mid-cycle to optimize conditions for successful fertilization and pregnancy. In doing so, a window of STI vulnerability is created during which potential pathogens including HIV enter the reproductive tract to infect host targets.