937 resultados para microbial pest control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluated the following aspects of the use of exclusion netting in low chill stone fruit: the efficacy of protection from fruit fly for this highly susceptible crop; the effects on environmental factors; and the effects on crop development. Concurrently, an economic viability study on the use of exclusion netting was undertaken. The trial site was a 0.6-ha block of low chill stone fruit at Nambour, south-east Queensland, Australia. In this area, populations of Queensland fruit fly (Bactrocera tryoni) are known to be substantial, particularly in spring and summer. The trial block contained healthy 4-year-old trees as follows: 96 peach trees (Prunus persica cv. Flordaprince) and 80 nectarine trees (40 P. persica var. nucipersica cv. White Satin and 40 P. persica var. nucipersica cv. Sunwright). Exclusion netting was installed over approximately half of the block in february 2001. The net was a UV-stabilized structural knitted fabric made from high-density polyethylene yarn with a 10-year prorated UV degradation warranty. The results demonstrated the efficacy of exclusion netting in the control of fruit flies. Exclusion netting increased maximum temperatures by 4.4 deg C and decreased minimum temperatures by 0.5 deg C. Although exclusion netting reduced irradiance by approximately 20%, it enhanced fruit development by 7-10 days and improved fruit quality by increasing sugar concentration by 20-30% and colour intensity by 20%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dry powders of four local species namely Piper guineense Schum and Thonn, Aframomum melegueta Schum, Zingiber officinale Rose; Capsicum annum Miller at three concentrations of 15g, 20g and 25g.kg were evaluated for their insecticidal effects against the larval of the dried fish weevil Demestes maculates Degeer. All the four species showed some effectiveness with P. guineense given a 100% mortality at the end of 72 hours at the three concentrations. The other species though gave less mortality were able to slow down the rate of development of the larvae to the adult size

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have shown that farmers in developing countries often overuse pesticides and do not adopt safety practices. Policies and interventions to promote a safer use of pesticides are often based on a limited understanding of the farmers’ own perspective of pesticide use. This often results in ineffective policies and the persistence of significant pesticide-related health and environmental problems, especially in developing countries. This chapter explores potentials and limitations of different approaches to study pesticide use in agriculture from the farmers’ perspective. In contrast to the reductionist and mono-disciplinary approaches often adopted, this chapter calls for integrative methodological approaches to provide a realistic and thorough understanding of the farmers’ perspective on pesticide use and illustrates the added value of such an approach with three case studies of pesticide use in Iran, India, and Colombia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study examined the contribution of the Cocoa Disease and Pest Control Programme (CODAPEC), which is a cocoa production-enhancing government policy, to reducing poverty and raising the living standards of cocoa farmers in Ghana. One hundred and fifty (150) cocoa farmers were randomly selected from five communities in the Bibiani-Anhwiaso-Bekwai district of the Western Region of Ghana and interviewed using structured questionnaires. Just over half of the farmers (53%) perceived the CODAPEC programme as being effective in controlling pests and diseases, whilst 56.6% felt that their yields and hence livelihoods had improved. In some cases pesticides or fungicides were applied later in the season than recommended and this had a detrimental effect on yields. To determine the level of poverty amongst farmers, annual household consumption expenditure was used as a proxy indicator. The study found that 4.7% of cocoa farmers were extremely poor having a total annual household consumption expenditure of less than GH¢ 623.10 ($310.00) while 8.0% were poor with less than GH¢ 801.62 ($398.81). An amount of money ranging from GH¢ 20.00 ($9.95) to GH¢ 89.04 ($44.29) per annum was needed to lift the 4.7% of cocoa farmers out of extreme poverty, which could be achieved through modest increases in productivity. The study highlighted how agricultural intervention programmes, such as CODAPEC, have the potential to contribute to improved farmer livelihoods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O uso de plantas inseticidas e de variedades pode ser forte aliado ao Manejo Integrado de Pragas (MIP), podendo reduzir o número de aplicações de inseticidas e minimizar seus efeitos ao homem e ao meio ambiente. em condições de campo, visando o controle de pragas tardias do tomateiro em duas cultivares de crescimento determinado, compararam-se as seguintes táticas de controle: a) Convencional - pulverizações com os produtos metamidofós, buprofezin, acefato, cipermetrina, abamectina, permetrina, teflubenzuron e lufenuron, aplicados em intervalos de três a seis dias; b) MIP - nível de ação de cada praga para aplicações de imidacloprid, triflumuron, lufenuron e abamectina; c) MIP - Azadirachta indica (nim) - nível de ação de cada praga para aplicações de óleo de nim (1,2% de azadiractina) a 0,5%. As táticas de controle MIP e MIP - nim foram eficientes no controle das pragas tardias do tomateiro, quando a pressão da população é baixa, não diferindo do tratamento convencional que apresentou as menores médias de infestação. As táticas de controle convencional, MIP e MIP-nim promoveram maiores produções do tomateiro, com incrementos de até 74%. O número de pulverizações foi reduzido em até 77% com as táticas MIP e MIP - nim, comparado ao método convencional. O produto nim pode ser alternativa promissora no controle de pragas tardias do tomateiro em campo, que se ajusta ao MIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to study the cropping system as complex one, applying methods from theory of dynamic systems and from the control theory to the mathematical modeling of the biological pest control. The complex system can be described by different mathematical models. Based on three models of the pest control, the various scenarios have been simulated in order to obtain the pest control strategy only through natural enemies' introduction. © 2008 World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The establishment of a peanut crop may be unsatisfactory due to poor seed performance in the field and among the factors attributed to this are a reduction in seed vigor during storage and the presence of pathogens. The objective of this study was to evaluate the efficiency of treating peanut seeds with fungicides and the effect on physiological performance and disease control during storage. In a completely random experimental design, two seed batches of the Runner IAC 886 peanut cultivar were submitted to five fungicide treatments (1 control - untreated; 2 thiram; 3 carbendazim + thiram; 4 fludioxonil + metalaxyl-m; 5 fludioxonil + mefenoxam + thiabendazole) and evaluated after zero, 30 and 60 days of storage. The seeds were stored untreated but treated before the evaluation of physiological performance from germination, vigor (first germination count and accelerated aging), field seedling emergence and seed sanitation tests. The results showed differences in batch performance potential during storage, with batch 1 being superior. The sanitation test showed that all the chemical seed treatments controlled pathogens efficiently (Aspergillus spp. and Penicillium sp.), but only thiram did not affect peanut seed performance in the laboratory evaluations.