969 resultados para microbial alteration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] Photochemical and microbial transformations of DOM were evaluated in headwater streams draining forested and human-modified lands (pasture, cropland, and urban development) by laboratory incubations. Changes in DOC concentrations, DOC isotopic signatures, and DOM fluorescence properties were measured to assess the amounts, sources, ages, and properties of reactive and refractory DOM under the influence of photochemistry and/or bacteria. DOC in streams draining forest-dominated watersheds was more photoreactive than in streams draining mostly human-modified watersheds, possibly due to greater contributions of terrestrial plant-derived DOC and lower amounts of prior light exposure in forested streams. Overall, the percentage of photoreactive DOC in stream waters was best predicted by the relative content of terrestrial fluorophores. The bioreactivity of DOC was similar in forested and human-modified streams, but variations were correlated with temperature and may be further controlled by the diagenetic status of organic matter. Alterations to DOC isotopes and DOM fluorescence properties during photochemical and microbial incubations were similar between forested and human-modified streams and included (1) negligible effects of microbial alteration on DOC isotopes and DOM fluorescence properties, (2) selective removal of 13C-depleted and 14C-enriched DOC under the combined influence of photochemical and microbial processes, and (3) photochemical alteration of DOM resulting in a preferential loss of terrestrial humic fluorescence components relative to microbial fluorescence components. This study provides a unique comparison of DOC reactivity in a regional group of streams draining forested and human-modified watersheds and indicates the importance of land use on the photoreactivity of DOC exported from upstream watersheds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forty-three core sections from Sites 434, 435, 438, 439, and 440 on the landward side and six core sections from Site 436 on the seaward side of the Japan Trench were obtained through the JOIDES Organic Geochemistry Advisory Panel for study of the origin and state of genesis of the organic matter associated with these continental slope, accretionary wedge, and outer trench slope sediments of the Japan Trench. The lipid fraction of these sediments is derived primarily from terrigenous organic matter and thus is allochthonous to the area. The associated kerogen fraction is of mixed allochthonous and autochthonous origin. The total organic carbon content seaward of the trench is less than that on the landward side. The composition of this organic matter is similar but not identical to that found in the landward side sediments. The organic matter within these sediments is in a diagenetic state in which geopolymerization of biogenic organic matter is nearly complete, but microbial alteration is still occurring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coastal upwelling system off the coast of Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. From 3 to 23 December 2012, R/V Meteor (M91) cruise took place in the Peruvian upwelling system between 4.59 and 15.4°S, and 82.0 to 77.5°W. During M91 we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like chromophoric dissolved organic matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. We analyzed SML and underlying water (ULW) samples at 38 stations focusing on CDOM spectral characteristics as indicator of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and excitation-emission matrix fluorescence (EEMs), which allow us to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. Spectral slope S varied between 0.012 to 0.043 1 nm-1 and was quite similar between SML and ULW, with no significant differences between the two compartments. Higher S values were observed in the ULW of the southern stations below 15°S. By EEMs, we identified five fluorescent components (F1-5) of the CDOM pool, of which two had excitation/emission characteristics of amino-acid-like fluorophores (F1, F4) and were highly enriched in the SML, with a median ratio SML : ULW of 1.5 for both fluorophores. In the study region, values for CDOM absorption ranged from 0.07 to 1.47 m-1. CDOM was generally highly concentrated in the SML, with a median enrichment with respect to the ULW of 1.2. CDOM composition and changes in spectral slope properties suggested a local microbial release of DOM directly in the SML as a response to light exposure in this extreme environment. In a conceptual model of the sources and modifications of optically active DOM in the SML and underlying seawater (ULW), we describe processes we think may take place (Fig. 1); the production of CDOM of higher MW by microbial release through growth, exudation and lysis in the euphotic zone, includes the identified fluorophores (F1, F2, F3, F4, F5). Specific amino-acid-like fluorophores (F1, F4) accumulate in the SML with respect to the ULW, as photochemistry may enhance microbial CDOM release by (a) photoprotection mechanisms and (b) cell-lysis processes. Microbial and photochemical degradation are potential sinks of the amino-acid-like fluorophores (F1, F4), and potential sources of reworked and more refractory humic-like components (F2, F3, F5). In the highly productive upwelling region along the Peruvian coast, the interplay of microbial and photochemical processes controls the enrichment of amino-acid-like CDOM in the SML. We discuss potential implications for air-sea gas exchange in this area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low concentrations of organic carbon in slowly accumulating sediments from Sites 597, 600, and 601 reflect a history of low marine productivity in the subtropical South Pacific since late Oligocene times. The distributions of n-alkanes, n-alkanoic acids, and n-alkanols provide evidence of the microbial alteration of sediment organic matter. Landderived hydrocarbons, possibly from eolian transport, dominate n-alkane distributions in these samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Taphonomic research of bones can provide additional insight into a site's formation and development, the burial environment and ongoing post-mortem processes. A total of 30 tortoise (Cylindraspis) femur bone samples from the Mare aux Songes site (Mauritius)were studied histologically, assessing parameters such as presence and type of microbial alteration, inclusions, staining/infiltrations, the degree of microcracking and birefringence. The absence of microbial attack in the 4200 year old Mare aux Songes bones suggests the animals rapidly entered the soil whole-bodied and were sealed anoxically, although they suffered frombiological and chemical degradation (i.e. pyrite formation/oxidation, mineral dissolution and staining) related to changes in the site's hydrology. Additionally, carbon and nitrogen stable isotopeswere analysed to obtain information on the animals' feeding behaviour. The results show narrowly distributed δ13C ratios, indicating a terrestrial C3 plant-based diet, combined with a wide range in δ15N ratios. This is most likely related to the tortoises' drought-adaptive ability to change their metabolic processes, which can affect the δ15N ratios. Furthermore, ZooMS collagen fingerprinting analysis successfully identified two tortoise species (C. triserrata and C. inepta) in the bone assemblage,which,when combined with stable isotope data, revealed significantly different δ15N ratios between the two tortoise species. As climatic changes around this period resulted in increased aridity in the Mascarene Islands, this could explain the extremely elevated δ15N ratio in our dataset. The endemic fauna was able to endure the climatic changes 4200 years ago, although human arrival in the 17th century changed the original habitat to such an extent that it resulted in the extinction of several species. Fortunately we are still able to study these extinct tortoises due to the beneficial conditions of their burial environment, resulting in excellent bone preservation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microbial ichnofossils in volcanic rocks provide a significant record of subsurface microbes and potentially extraterrestrial biosignatures. Here, the textures, mineralogy, and geochemistry of two continental basaltic hydrovolcanic deposits - Reed Rocks and Black Hills - in the Fort Rock Volcanic Field (FRVF) are investigated. Methods include petrographic microscopy, micro and powder X-ray diffraction, SEM/BSE/EDF imaging, energy dispersive spectroscopy, stable isotopes, and X-ray fluorescence. Petrographic analysis revealed granular and tubular textures with biogenic morphologies that include terminal enlargements, septate divisions, branching forms, spiral filaments, and ovoid bodies resembling endolithic microborings described in ocean basalts. They display evidence of behaviour and a geologic context expressing their relative age and syngenicity. Differences in abiotic alteration and the abundance/morphotype assemblage of putative microborings between the sites indicate that water/rock ratio, fluid composition and flux, temperature and secondary phase formation are influences on microboring formation. This study is the first report of reputed endolithic microborings in basalts erupted in a continental lacustrine setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioremediation strategies continue to be developed to mitigate the environmental impact of petroleum hydrocarbon contamination. This study investigated the ability of soil microbiota, adapted by prior exposure, to biodegrade petroleum. Soils from Barrow Is. (W. Australia), a class A nature reserve and home to Australia’s largest onshore oil field, were exposed to Barrow production oil (50 ml/kg soil) and incubated (25 °C) for successive phases of 61 and 100 days. Controls in which oil was not added at Phase I or II were concurrently studied and all treatments were amended with the same levels of additional nutrient and water to promote microbial activity. Prior exposure resulted in accelerated biodegradation of most, but not all, hydrocarbon constituents in the production oil. Molecular biodegradation parameters measured using gas chromatography–mass spectrometry (GC–MS) showed that several aromatic constituents were degraded more slowly with increased oil history. The unique structural response of the soil microbial community was reflected by the response of different phospholipid fatty acid (PLFA) sub-classes (e.g. branched saturated fatty acids of odd or even carbon number) measured using a ratio termed Barrow PLFA ratio (B-PLFAr). The corresponding values of a previously proposed hydrocarbon degrading alteration index showed a negative correlation with hydrocarbon exposure, highlighting the site specificity of PLFA-based ratios and microbial community dynamics. B-PLFAr values increased with each Phase I and II addition of production oil. The different hydrocarbon biodegradation rates and responses of PLFA subclasses to the Barrow production oil probably relate to the relative bioavailability of production oil hydrocarbons. These different effects suggest preferred structural and functional microbial responses to anticipated contaminants may potentially be engineered by controlled pre-exposure to the same or closely related substrates. The bioremediation of soils freshly contaminated with petroleum could benefit from the addition of exhaustively bioremediated soils rich in biota primed for the impacting hydrocarbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire blight, caused by the gram negative bacterium Erwinia amylovora, is one of the most destructive bacterial diseases of Pomaceous plants. Therefore, the development of reliable methods to control this disease is desperately needed. This research investigated the possibility to interfere, by altering plant metabolism, on the interactions occurring between Erwinia amylovora, the host plant and the epiphytic microbial community in order to obtain a more effective control of fire blight. Prohexadione-calcium and trinexapac-ethyl, two dioxygenase inhibitors, were chosen as a chemical tool to influence plant metabolism. These compounds inhibit the 2-oxoglutarate-dependent dioxygenases and, therefore, they greatly influence plant metabolism. Moreover, dioxygenase inhibitors were found to enhance plant resistance to a wide range of pathogens. In particular, dioxygenase inhibitors application seems a promising method to control fire blight. From cited literature, it is assumed that these compounds increase plant defence mainly by a transient alteration of flavonoids metabolism. We tried to demonstrate, that the reduction of susceptibility to disease could be partially due to an indirect influence on the microbial community established on plant surface. The possibility to influence the interactions occurring in the epiphytic microbial community is particularly interesting, in fact, the relationships among different bacterial populations on plant surface is a key factor for a more effective biological control of plant diseases. Furthermore, we evaluated the possibility to combine the application of dioxygenase inhibitors with biological control in order to develop an integrate strategy for control of fire blight. The first step for this study was the isolation of a pathogenic strain of E. amylovora. In addition, we isolated different epiphytic bacteria, which respond to general requirements for biological control agents. Successively, the effect of dioxygenase inhibitors treatment on microbial community was investigated on different plant organs (stigmas, nectaries and leaves). An increase in epiphytic microbial population was found. Further experiments were performed with aim to explain this effect. In particular, changes in sugar content of nectar were observed. These changes, decreasing the osmotic potential of nectar, might allow a more consistent growth of epiphytic bacteria on blossoms. On leaves were found similar differences as well. As far as the interactions between E. amylovora and host plant, they were deeply investigated by advanced microscopical analysis. The influence of dioxygenase inhibitors and SAR inducers application on the infection process and migration of pathogen inside different plant tissues was studied. These microscopical techniques, combined with the use of gpf-labelled E. amylovora, allowed the development of a bioassay method for resistance inducers efficacy screening. The final part of the work demonstrated that the reduction of disease susceptibility observed in plants treated with prohexadione-calcium is mainly due to the accumulation of a novel phytoalexins: luteoforol. This 3-deoxyflavonoid was proven to have a strong antimicrobial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic communities in tributary-mainstem networks might interact via downstream drift of invertebrates or material from tributaries and adult dispersal from the mainstem. Depending on the strength of these interactions, mainstem downstream communities are expected to be more similar to tributary communities due to drift or habitat alteration. Communities not connected by flow are expected to be similar due to adult dispersal but decreasing in similarity with distance from the mainstem. We investigated interactions between invertebrate communities of a 7th order river and 5th order tributary by comparing benthic community structure in the river upstream and downstream of the tributary confluence and upstream in the tributary. Non-metric multidimensional scaling showed invertebrate communities and habitat traits from river locations directly downstream of the tributary clustered tightly, intermediate between tributary and mid-channel river locations. In addition, Bray-Curtis dissimilarity increased between the mainstem and tributary with distance upstream in the tributary. Our results indicate that similarities between mainstem and tributary communities are potentially caused by direct mass effects from tributary to downstream mainstem communities by invertebrate drift and indirect mass effects by habitat restructuring via material delivery from the tributary, as well as potential effects of adult dispersal from the river on proximal tributary communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subseafloor environments preserved in Archean greenstone belts provide an analogue for investigating potential subsurface habitats on Mars. The c. 3.5-3.4 Ga pillow lava metabasalts of the mid-Archean Barberton greenstone belt, South Africa, have been argued to contain the earliest evidence for microbial subseafloor life. This includes candidate trace fossils in the form of titanite microtextures, and sulfur isotopic signatures of pyrite preserved in metabasaltic glass of the c. 3.472 Ga Hooggenoeg Formation. It has been contended that similar microtextures in altered martian basalts may represent potential extraterrestrial biosignatures of microbe-fluid-rock interaction. But despite numerous studies describing these putative early traces of life, a detailed metamorphic characterization of the microtextures and their host alteration conditions in the ancient pillow lava metabasites is lacking. Here, we present a new nondestructive technique with which to study the in situ metamorphic alteration conditions associated with potential biosignatures in mafic-ultramafic rocks of the Hooggenoeg Formation. Our approach combines quantitative microscale compositional mapping by electron microprobe with inverse thermodynamic modeling to derive low-temperature chlorite crystallization conditions. We found that the titanite microtextures formed under subgreenschist to greenschist facies conditions. Two chlorite temperature groups were identified in the maps surrounding the titanite microtextures and record peak metamorphic conditions at 315 ± 40°C (XFe3+(chlorite) = 25-34%) and lower-temperature chlorite veins/microdomains at T = 210 ± 40°C (lower XFe3+(chlorite) = 40-45%). These results provide the first metamorphic constraints in textural context on the Barberton titanite microtextures and thereby improve our understanding of the local preservation conditions of these potential biosignatures. We suggest that this approach may prove to be an important tool in future studies to assess the biogenicity of these earliest candidate traces of life on Earth. Furthermore, we propose that this mapping approach could also be used to investigate altered mafic-ultramafic extraterrestrial samples containing candidate biosignatures.