471 resultados para microalgae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technoeconomic analysis of renewable aviatin fuels has not been widely considered, despite the increasing global attention that the field has received. We present three process models for production of aviation fuel from microalgae, Pongamia pinnata, and sugarcane molasses. The models and assumptions have been deposited on a wiki (http://qsafi.aibn.uq.edu.au) and are open and accessible to the community. Based on currently available long-term reputable technological data, this analysis indicates that the biorefinieries processing the microalgae, Pongamia seeds, and sugarcane feedstocks would be competitive with crude oil at $1343, $374, and $301/bbl, respectively. Sensitivity analyses of the major economic drivers suggest technological and market developments that would bring the corresponding figures down to $385, $255, and $168/bbl. The dynamic nature of the freely accessible models will allow the community to track progress toward economic competitiveness of aviation fuels from these renewable feedstocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a comprehensive study of microalgae biodiesel for the compression ignition engine. It examines microalgae growing conditions, the extraction process and physiochemical properties with a wide range of microalgae species. It also evaluates microalgae biodiesel with regards to engine performance and emission characteristics and explains the difficulties and potentiality of microalgae as a biodiesel. In doing so, an extensive analysis of different extraction methods and engine testing was conducted and a comprehensive study on microalgae biodiesel is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microalgae biotechnology has recently emerged into the lime light owing to numerous consumer products that can be harnessed from microalgae. Product portfolio stretches from straightforward biomass production for food and animal feed to valuable products extracted from microalgal biomass, including triglycerides which can be converted into biodiesel. For most of these applications, the production process is moderately economically viable and the market is developing. Considering the enormous biodiversity of microalgae and recent developments in genetic and metabolic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of detailed culture and screening techniques, microalgal biotechnology can meet the high demands of food, energy and pharmaceutical industries. This review article discusses the technology and production platforms for development and creation of different valuable consumer products from microalgal biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass is an important energy resource for producing bioenergy and growing the global economy whilst minimising greenhouse gas emissions. Many countries, like Australia have a huge amount of biomass with the potential for bioenergy, but non-edible feedstock resources are significantly under-exploited. Hence it is essential to map the availability of these feedstocks to identify the most appropriate bioenergy solution for each region and develop supply chains for biorefineries. Using Australia as a case study,we present the spatial availability and opportunities for second and third generation feedstocks. Considerations included current land use, the presence of existing biomass industries and climatic conditions. Detailed information on the regional availability of biomass was collected from government statistics, technical reports and energy assessments as well as from academic literature. Second generation biofuels have the largest opportunity in New South Wales, Queensland and Victoria (NSW, QLD and VIC) and the regions with the highest potential for microalgae are Western Australia and Northern Territory (WA, NT), based on land use opportunity cost and climate. The approach can be used in other countries with a similar climate. More research is needed to overcome key technical and economic hurdles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefits of microalgae biofuels over first and second generation counterparts suggest it has potential as a major biofuel feedstock in Australia. However, the high costs of cultivation and processing has been a major drawback for investors and policymakers. This presentation outlines the economic potential for microalgae biofuels: firstly, through production of microalgae co-products (e.g feed and fertiliser); and secondly, deriving what consumers are willing to pay for microalgae biofuels based on external benefits. These findings will assist decision-makers in both private and public sectors and inform policy development with respect to microalgae as a feedstock for biofuels and other products. This study adds an economics perspective to the current technical literature which has been dominated by biochemical, engineering and financial valuation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carotenoids are associated with various health benefits, such as prevention of age-related macular degeneration, cataract, certain cancers, rheumatoid arthritis, muscular dystrophy and cardiovascular problems. As microalgae contain considerable amounts of carotenoids, there is a need to find species with high carotenoid content. Out of hundreds of Australian isolates, twelve microalgal species were screened for carotenoid profiles, carotenoid productivity, and in vitro antioxidant capacity (total phenolic content (TPC) and ORAC). The top four carotenoid producers at 4.68-6.88 mg/g dry weight (DW) were Dunaliella salina, Tetraselmis suecica, Isochrysis galbana, and Pavlova salina. TPC was low, with D. salina possessing the highest TPC (1.54 mg Gallic Acid Equivalents/g DW) and ORAC (577 μmol Trolox Equivalents/g DW). Results indicate that T. suecica, D. salina, P. salina and I. galbana could be further developed for commercial carotenoid production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 +/- 35.01 nm, 555.74 +/- 19.93 nm, and 1620.24 +/- 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microalgae play an important role in conditioning water quality for penaeid larval culture. Recently it has been demonstrated that a modification of the green water larval culture system (Ling, 1969) for Macrobrachium allows the production of post larvae without any water change, despite extensive use of artificial feeds (Ang and Cheah, 1986). Increase of toxic metabolites such as ammonia and nitride are also common in penaeid larval culture, especially where excessive amounts of artifial feeds are employed. Present work examines the use of six marine microalgae at four cell concentrations as a "biological filter" system, to control and detoxify levels of ammonia and nitrite in P. monodon larval culture water whilst using artificial diet. Preliminary results indicate that amongst the six algal species tested, C. japonica at 1000 cell μlˉ¹ was most effective in reducing accumulated toxic metabolites from an unchanged culture water environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolation of high neutral lipid-containing microalgae is key to the commercial success of microalgae-based biofuel production. The Nile red fluorescence method has been successfully applied to the determination of lipids in certain microalgae, but has been unsuccessful in many others, particularly those with thick, rigid cell walls that prevent the penetration of the fluorescence dye. The conventional "one sample at a time" method was also time-consuming. In this study, the solvent dimethyl sulfoxide (DMSO) was introduced to microalgal samples as the stain carrier at an elevated temperature. The cellular neutral lipids were determined and quantified using a 96-well plate on a fluorescence spectrophotometer with an excitation wavelength of 530 nm and an emission wavelength of 575 run. An optimized procedure yielded a high correlation coefficient (R-2 = 0.998) with the lipid standard triolein and repeated measurements of replicates. Application of the improved method to several green algal strains gave very reproducible results with relative standard errors of 8.5%, 3.9% and 8.6%, 4.5% for repeatability and reproducibility at two concentration levels (2.0 mu g/mL and 20 mu g/mL), respectively. Moreover, the detection and quantification limits of the improved Nile red staining method were 0.8 mu g/mL and 2.0 mu g/mL for the neutral lipid standard triolein, respectively. The modified method and a conventional gravimetric determination method provided similar results on replicate samples. The 96-well plate-based Nile red method can be used as a high throughput technique for rapid screening of a broader spectrum of naturally-occurring and genetically-modified algal strains and mutants for high neutral lipid/oil production. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.