999 resultados para micro-jet printing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ink-jet printing is an important process for placing active electronics on plastic substrates. We demonstrate ink-jet printing as a viable method for large area fabrication of carbon nanotube (CNT) thin film transistors (TFTs). We investigate different routes for producing stable CNT solutions ("inks"). These consist of dispersion methods for CNT debundling and the use of different solvents, such as N -methyl-2-pyrrolidone. The resulting printable inks are dispensed by ink-jet onto electrode bearing silicon substrates. The source to drain electrode gap is bridged by percolating networks of CNTs. Despite the presence of metallic CNTs, our devices exhibit field effect behavior, with effective mobility of ∼0.07 cm2 /V s and ON/OFF current ratio of up to 100. This result demonstrates the feasibility of ink-jet printing of nanostructured materials for TFT manufacture. © 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite thin film transistors (TFTs) based on nonpercolating networks of single-walled carbon nanotubes (CNTs) and polythiophene semiconductor [poly [5, 5′ -bis(3-dodecyl-2-thienyl)- 2, 2′ -bithiophene] (PQT-12)] thin film hosts are demonstrated by ink-jet printing. A systematic study on the effect of CNT loading on the transistor performance and channel morphology is conducted. With an appropriate loading of CNTs into the active channel, ink-jet printed composite transistors show an effective hole mobility of 0.23 cm 2 V-1 s-1, which is an enhancement of more than a factor of 7 over ink-jet printed pristine PQT-12 TFTs. In addition, these devices display reasonable on/off current ratio of 105-10 6, low off currents of the order of 10 pA, and a sharp subthreshold slope (<0.8 V dec-1). The work presented here furthers our understanding of the interaction between polythiophene polymers and nonpercolating CNTs, where the CNT density in the bilayer structure substantially influences the morphology and transistor performance of polythiophene. Therefore, optimized loading of ink-jet printed CNTs is crucial to achieve device performance enhancement. High performance ink-jet printed nanocomposite TFTs can present a promising alternative to organic TFTs in printed electronic applications, including displays, sensors, radio-frequency identification (RFID) tags, and disposable electronics. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper reports an innovative technique for reagents storage in microfluidic devices by means of a one-step UV-photoprintable ionogel-based microarray on non-modified polymeric substrates. Although the ionogel and the ink-jet printing technology are well published, this is the first study where both are used for long-term reagent storage in lab-on-a-chip devices. This technology for reagent storage is perfectly compatible with mass production fabrication processes since pre-treatment of the device substrate is not necessary and inkjet printing allows for an efficient reagent deposition process. The functionality of this microarray is demonstrated by testing the release of biotin-647 after being stored for 1 month at room temperature. Analysis of the fluorescence of the ionogel-based microarray that contains biotin-647 demonstrated that 90% of the biotin-647 present was released from the ionogel-based microarray after pumping PBS 0.1% Tween at 37 °C. Moreover, the activity of biotin-647 after being released from the ionogel-based microarray was investigated trough the binding capability of this biotin to a microcontact printed chip surface with avidin. These findings pave the way for a novel, one-step, cheap and mass production on-chip reagents storage method applicable to other reagents such as antibodies and proteins and enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to fabricate polymer field-effect transistors with submicron channel lengths is described. A thin polymer film is spin coated on a prepatterned resist with a low resolution to create a thickness contrast in the overcoated polymer layer. After plasma and solvent etching, a submicron-sized line structure, which templates the contour of the prepattern, is obtained. A further lift-off process is applied to define source-drain electrodes of transistors. With a combination of ink-jet printing, transistors with channel length down to 400 nm have been fabricated by this method. We show that drive current density increases as expected, while the on/off current ratio 106 is achieved. © 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work explored the use of industrial drop-on-demand inkjet printing for masking steel surfaces on engineering components, followed by chemical etching, to produce patterned surfaces. A solvent-based ink was printed on to mild steel samples and the influences of substrate topography and substrate temperature were investigated. Contact angle measurements were used to assess wettability. Regular patterns of circular spots (∼60 /on diameter) and more complex mask patterns were printed. Variation of the substrate temperature had negligible effect on the final size of the printed drops or on the resolution achieved. Colored optical interference fringes were observed on the dried ink deposits and correlated with film thickness measurements by whitelight interferometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The airflow between the fast-moving substrate and stationary print heads in a web print press may cause print quality issues in high-speed, roll-to-roll printing applications. We have studied the interactions between ink drops and the airflow in the gap between the printhead and substrate, by using an experimental flow channel and high-speed imaging. The results show: 1) the gap airflow is well approximated by a standard Couette flow profile; 2) the effect of gap airflow on the flight paths of main drops and satellites is negligible; and 3) the interaction between the gap airflow and the wakes from the printed ink drops should be investigated as the primary source of aerodynamically- related print quality issues. ©2012 Society for Imaging Science and Technology.