937 resultados para methyl isobutyl ketone
Resumo:
Selective extraction of Mercury(II) using 1-naphthylthiourea-methyl isobutyl ketone (ANTU-MIBK) system from hydrochloric acid solutions (0.1-10 M) has been studied. Influence of foreign ions, acid and ligand concentrations has been investigated. Addition of ANTU in MIBK enhanced, extraction capacity of MIBK to several times. Low effect of foreign ions and high separation factors for a number of metal ions determined at 0.5 M hydrochloric acid concentration evaluated the proposed method efficient and selective. The experimental data obtained from application of the method for extraction of mercury from a synthetic aqueous solution reveal that more than 99% mercury can be separated from cadmium, zinc and selenium in a single step with five minutes equilibration
Resumo:
Mode of access: Internet.
Resumo:
We report preliminary experiments on the ternary-liquid mixture, methyl ethyl ketone (MEK)+water (W)+secondary butyl alcohol (sBA)-a promising system for the realization of the quadruple critical point (QCP). The unusual tunnel-shaped phase diagram shown by this system is characterized and visualized by us in the form of a prismatic phase diagram. Light-scattering experiments reveal that (MEK+W+sBA) shows near three-dimensional-Ising type of critical behavior near the lower critical solution temperatures, with the susceptibility exponent (gamma) in the range of 1.217 <=gamma <= 1.246. The correlation length amplitudes (xi(o)) and the critical exponent (nu) of the correlation length (xi) are in the ranges of 3.536 <=xi(o)<= 4.611 A and 0.619 <=nu <= 0.633, respectively. An analysis in terms of the effective susceptibility exponent (gamma(eff)) shows that the critical behavior is of the Ising type for MEK concentrations in the ranges of 0.1000 <= X <= 0.1250 and X >= 0.3000. But, for the intermediate range of 0.1750 <= X < 0.3000, the system shows a tendency towards mean-field type of critical behavior. The advantages of the system (MEK+W+sBA) over the system (3-methylpyridine+water+heavy water+potassium Iodide) for the realization of a QCP are outlined.
Resumo:
Vapor-liquid equilibrium data have been measured for the binary systems methyl ethyl ketone-p-xylene and chlorobenzene-p-xylene, at 685 mmHg pressure. The activity coefficients have been evaluated taking Into consideration the vapor-phase nonideallty. The f-x-y data have been subjected to a thermodynamic consistency test and the activity coefficients have been correlated by the Wilson equation.
Resumo:
The rate coefficients for the reaction between atomic chlorine and a number of naturally occurring species have been measured at ambient temperature and atmospheric pressure using the relative rate technique. The values obtained were (4.0 ± 0.8) × 10-10, (2.1 ± 0.5) × 10-10, (3.2 ± 0.5) × 10-10, and (4.9 ± 0.5) × 10-10 cm3 molecule-1 s-1, for reactions with isoprene, methyl vinyl ketone, methacrolein and δ3-carene, respectively. The value obtained for isoprene compares favourably with previously reported values. No values have been reported to date for the rate constants of the other reactions.
Resumo:
Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress-induced accumulation of reactive oxygen species (ROS), but the products of isoprene-ROS reactions in plants have not been detected. Using pyruvate-2-13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biotachemistryclimate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.
Resumo:
Reduced levels of trienoic fatty acids (TAs) in chloroplast membranes induce thermotolerance in several plant species, but the underlying mechanisms remain unclear. TA peroxidation in plant cell membranes generates cytotoxic, TA-derived compounds containing alpha,beta-unsaturated carbonyl groups. The relationship between low TA levels and the amounts of cytotoxic TA-derived compounds was examined using thermotolerant transgenic cyclamen (Cyclamen persicum Mill.) with low TA contents. Changes in the levels of the cytotoxic TA-derived acrolein (ACR), methyl vinyl ketone (MVK), (E)-2-hexenal, 4-hydroxy-2-nonenal, and malondialdehyde were analysed in the leaf tissues of wild-type (WT) and thermotolerant transgenic cyclamen under heat stress. Levels of ACR and MVK in the WT increased in parallel with the occurrence of heat-induced tissue damage, whereas no such changes were observed in the thermotolerant transgenic lines. Furthermore, exogenous ACR and MVK infiltrated into leaves to concentrations similar to those observed in heat-stressed WT leaves caused similar disease symptoms. These results suggest that thermotolerance in transgenic cyclamen depends on reduced production rates of ACR and MVK under heat stress, due to the low level of TAs in these plants.
Resumo:
This work follows a feasibility study (187) which suggested that a process for purifying wet-process phosphoric acid by solvent extraction should be economically viable. The work was divided into two main areas, (i) chemical and physical measurements on the three-phase system, with or without impurities; (ii) process simulation and optimization. The object was to test the process technically and economically and to optimise the type of solvent. The chemical equilibria and distribution curves for the system water - phosphoric acid - solvent for the solvents n-amyl alcohol, tri-n-butyl phosphate, di-isopropyl ether and methyl isobutyl ketone have been determined. Both pure phosphoric acid and acid containing known amounts of naturally occurring impurities (Fe P0 4 , A1P0 4 , Ca3(P04)Z and Mg 3(P0 4 )Z) were examined. The hydrodynamic characteristics of the systems were also studied. The experimental results obtained for drop size distribution were compared with those obtainable from Hinze's equation (32) and it was found that they deviated by an amount related to the turbulence. A comprehensive literature survey on the purification of wet-process phosphoric acid by organic solvents has been made. The literature regarding solvent extraction fundamentals and equipment and optimization methods for the envisaged process was also reviewed. A modified form of the Kremser-Brown and Souders equation to calculate the number of contact stages was derived. The modification takes into account the special nature of phosphoric acid distribution curves in the studied systems. The process flow-sheet was developed and simulated. Powell's direct search optimization method was selected in conjunction with the linear search algorithm of Davies, Swann and Campey. The objective function was defined as the total annual manufacturing cost and the program was employed to find the optimum operating conditions for anyone of the chosen solvents. The final results demonstrated the following order of feasibility to purify wet-process acid: di-isopropyl ether, methylisobutyl ketone, n-amyl alcohol and tri-n-butyl phosphate.
Resumo:
In this work, we have examined the activity and selectivity of new catalysts for the single-stage production of methyl isobutyl ketone (MIBK, 4- methyl-2-pentanone) from acetone (both in liquid and gas phase), using a fixed bed reactor operated in the temperature range between 373 and 473 K. The main reaction pathways for the synthesis of MIBK from acetone are given in Fig.1. The first step is the self condensation of acetone to diacetone alcohol (DAA, 4-hydroxy-4-methyl-2-pentanone); the second step is the dehydration of DAA to mesityl oxide (MO, 4-methyl-3-penten-2-one); the final step is the selective hydrogenation of the carbon–carbon double bond of MO to form MIBK. The most commonly observed side reactions are over-condensations and unselective hydrogenations (also shown in Fig.1). Two types of catalysts were studied: i)Pd supported on MgO-SiO2 mixed oxides with ratio of Mg to Si, synthetized using Ohnishi’s method and ii)Pd supported on alumina doped with 5% or 10% of MgO. The different Mg-Si and Mg-Al catalysts were characterized by different techniques (XRD, BET, SEM, NH3-TPD and CO2-TPD) and tested under different conditions in the condensation of acetone to diacetone alcohol and its dehydration to mesityl oxide to enhance the activity. Palladium was chosen as metal component, and its hydrogenation activity was studied. A low hydrogenation activity negatively affects the acetone conversion and promotes the production of mesityl oxide. Hydrogenation conditions being too severe may favor the unwanted hydrogenation of acetone to 2-propanol and of MIBK to methyl isobutyl carbinol (MIBC, 4-methyl-2-pentanol) but this effect is less detrimental to the MIBK selectivity than an unsufficient hydrogenation activity.
Resumo:
Synthesis of methyl 2, 7-dimethyltricyclo{5.2.2.0(1,5}undec-5-en-6-carboxylates, the tricyclic skeleton present in (+)-allo-cedrol (1) is described using the Diels-Alder strategy. Thus, Birch reduction of the aromatic acid 8 gives 5, the methyl ester of which is isomerised with DBU to a 1:1 mixture of the dienes 6 and 4. Cycloaddition of this mixture with 2-chloroacrylonitrile followed by hydrolysis yields the ketone 60 having the tricyclo{5.2.2.0(1.5)}undec-5-ene framework. Similar reaction with methyl vinyl ketone affords the regioisomeric adducts 61 and 62.
Resumo:
In this paper we report the quantitative oxygen quenching effect on laser-induced fluorescence of acetone, methyl ethyl ketone, and 3-pentanone at low pressures (approximate to 700torr) with oxygen partial pressures up to 450torr. Nitrogen was used as a bath gas in which these molecular tracers were added in different quantities according to their vapor pressure at room temperature. These tracers were excited by using a frequency-quadrupled, Q-switched, Nd:YAG laser (266nm). Stern-Volmer plots were found to be linear for all the tracers, suggesting that quenching is collisional in nature. Stern-Volmer coefficients (k(sv)) and quenching rate constants (k(q)) were calculated from Stern-Volmer plots. The effects of oxygen on the laser-induced fluorescence of acetone, methyl ethyl ketone, and 3-pentanone were compared with each other. Further, the Smoluchowski theory was used to calculate the quenching parameters and compared with the experimental results.
Resumo:
Volatile organic compounds (VOCs) in the headspace of bubble chambers containing branches of live coral in filtered reef seawater were analysed using gas chromatography with mass spectrometry (GC-MS). When the coral released mucus it was a source of dimethyl sulfide (DMS) and isoprene; however, these VOCs were not emitted to the chamber headspace from mucus-free coral. This finding, which suggests that coral is an intermittent source of DMS and isoprene, was supported by the observation of occasional large pulses of atmospheric DMS (DMSa) over Heron Island reef on the southern Great Barrier Reef (GBR), Australia, in the austral winter. The highest DMSa pulse (320 ppt) was three orders of magnitude less than the DMS mixing ratio (460 ppb) measured in the headspace of a dynamically purged bubble chamber containing a mucus-coated branch of Acropora aspera indicating that coral reefs can be strong point sources of DMSa. Static headspace GC-MS analysis of coral fragments identified mainly DMS and seven other minor reduced sulfur compounds including dimethyl disulfide, methyl mercaptan, and carbon disulfide, while coral reef seawater was an indicated source of methylene chloride, acetone, and methyl ethyl ketone. The VOCs emitted by coral and reef seawater are capable of producing new atmospheric particles < 15 nm diameter as observed at Heron Island reef. DMS and isoprene are known to play a role in low-level cloud formation, so aerosol precursors such as these could influence regional climate through a sea surface temperature regulation mechanism hypothesized to operate over the GBR.
Resumo:
Reaction of 6-Image -butyl-1-bromomethyl-2-(2-tetrahydropyranyloxy)-naphthalene2c with tetrachlorocatechol (TCC) in acetone in presence of K2CO3 gave diastereomers 6c and 7c. A mechanism (Scheme-1) invoking the base induced cleavage of the pyranyl ether 2 to 1,2-naphthoquinone-1-methide 8 as the first step has been postulated. The cleavage of the pyranyl ether linkage in 2 to give dimers 4 and 5 of 1,2-naphthoquinone-1-methide has been demonstrated with different bases. 1,2-Naphthoquinone-1-methide 8, thus generated, undergoes Michael addition with TCC followed by elimination of chloride ions to give a diketone, which further undergoes aldolisation with acetone to give diastereomers 6 and 7. Michael reaction of 8, generated Image from pyranyl ethers 2a-c, with tetrabromocatechol (TBC) under similar-reaction conditions gave the expected monobromo compounds 6h, 6i, 6k, 7n, 7n and 7q. The last step in the proposed mechanism, Image ., aldolisation has also been demonstrated using different ketonic solvents. Thus, reaction of 2a-c with TCC/TBC in diethyl ketone/methyl ethyl ketone under similar reaction conditions gave the expected compounds 6 and 7.