935 resultados para methodologies for greenhouse gases emissions inventory and CO2 capture and storage
Resumo:
Currently, society faces a number of challenges related to the large amounts of organic wastes generated and accumulated by the increasing expansion of agroindustrial activities1. Most of these wastes are rich in lignocellulosic compounds, which represents a major fraction of all plant biomass (of above 90%), so, its degradation is crucial for global carbon cycle2. These organic wastes may be introduced directly on agriculture sector as soil organic amendment, however, these might contain phytochemicals, such as phenolic compounds which may introduce toxic effects to soil and to beneficial organisms. Transformation and degradation of these renewable organic wastes into composts (COMPOSTING) is a possible solution for these problems and an environmentally friendly processes that allows make use of natural resources efficiently3. The main potential handicap is generation and emission of greenhouse gases such as carbon dioxide (CO2 ), methane (CH4 ) and nitrous oxide (N2O) and another ones which may led serious problems like nitric oxide (NO) and ammonia (NH3) 4. For this reason, quantification of GHG emissions from composting and finding possible relations with the chemical and structural composition of the wastes used is crucial to the development of technologies for mitigating emissions and should help to make decisions concerning waste management.
Resumo:
This policy-neutral report is the sixth statewide greenhouse gas inventory conducted for Iowa as required by Iowa Code 455B.104.
Resumo:
This Technical Support Document is an addendum to the "2011 Iowa Statewide Greenhouse Gas Emission Inventory Report".
Resumo:
This policy-neutral report is the seventh statewide greenhouse gas inventory conducted for Iowa as required by Iowa Code 455B.104. Note: This report was amended on 12/11/14 to correct minor typographical errors.
Resumo:
This technical support document is an addendum to the 2012 Iowa Statewide Greenhouse Gas Emissions Inventory Report. Note: This report was amended on 12/11/14 to correct minor typographical errors.
Resumo:
This policy-neutral report is the eighth statewide greenhouse gas inventory conducted for Iowa as required by Iowa Code 455B.104.
Resumo:
This technical support document is an addendum to the 2013 Iowa Statewide Greenhouse Ga Emissions Inventory.
Resumo:
Description based on: 1998.
Resumo:
A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs) and Ozone Depleting Substances (ODSs). The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHGrelated effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the residual circulation of the atmosphere and chemical effects from CO2 cooling more than halve the increase in reactive nitrogen in the mid to upper stratosphere that results from the specified increase in N2O between 1950 and 2100.
Resumo:
The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone and temperature responses to changes in CO2 and ozone-depleting substances (ODSs). Here we untangle the ozone-temperature coupling and show that the attribution of global-mean stratospheric temperature changes to CO2 and ODS changes (which are the true anthropogenic forcing agents) can be quite different from the traditional attribution to CO2 and ozone changes. The significance of these effects is quantified empirically using simulations from a three-dimensional chemistry-climate model. The results confirm the essential validity of the traditional approach in attributing changes during the past period of rapid ODS increases, although we find that about 10% of the upper stratospheric ozone decrease from ODS increases over the period 1975–1995 was offset by the increase in CO2, and the CO2-induced cooling in the upper stratosphere has been somewhat overestimated. When considering ozone recovery, however, the ozone-temperature coupling is a first-order effect; fully 2/5 of the upper stratospheric ozone increase projected to occur from 2010–2040 is attributable to CO2 increases. Thus, it has now become necessary to base attribution of global-mean stratospheric temperature changes on CO2 and ODS changes rather than on CO2 and ozone changes.
Resumo:
Mode of access: Internet.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This research has been performed to emphasize about the problem known as ?climate changes? occurring due to the greenhouse gases emissions (Carbon dioxide (CO2), Methane (CH4),Nitrogen oxides (NOx), Ozone (O3), Chlorofluorocarbons (artificial). Specially, the project will be focused on the CO2 emissions produced mainly from the fossil fuels burning in power plants and other kind of industrial processes. To understand how important the global is warming and therefore the climate change, both the increase of emissions and the evolution of those will be studied in this project drawing conclusions about its effect. The Kyoto Protocol, the most important agreement internationally, signed by a great majority of the industrialized and developed countries, which try to limit the CO2 emissions to the atmosphere, will be cited in this project. Taking into account the effects of global warming and applying the international legislation on emissions of greenhouse gases, a number of measures will be exposed, where the CO2 capture will be studied deeply. Three different kind of CO2 capture technologies will be studied, drawing the conclusion that the post-combustion capture, in particular by amine chemical absorption, is the most efficient one.
Resumo:
On April 27, 2007, Iowa Governor Chet Culver signed Senate File 485, a bill related to greenhouse gas emissions. Part of this bill created the Iowa Climate Change Advisory Council (ICCAC), which consists of 23 governor-appointed members from various stakeholder groups, and 4 nonvoting, ex officio members from the General Assembly. ICCAC’s immediate responsibilities included submitting a proposal to the Governor and General Assembly that addresses policies, cost-effective strategies, and multiple scenarios designed to reduce statewide greenhouse gas emissions. Further, a preliminary report was submitted in January 2008, with a final proposal submitted in December 2008. In the Final Report, the Council presents two scenarios designed to reduce statewide greenhouse gas emissions by 50% and 90% from a 2005 baseline by the year 2050. For the 50% reduction by 2050, the Council recommends approximately a 1% reduction by 2012 and an 11% reduction by 2020. For the 90% reduction scenario, the Council recommends a 3% reduction by 2012 and a 22% reduction 2020. These interim targets were based on a simple extrapolation assuming a linear rate of reduction between now and 2050. In providing these scenarios for your consideration, ICCAC approved 56 policy options from a large number of possibilities. There are more than enough options to reach the interim and final emission targets in both the 50% and 90% reduction scenarios. Direct costs and cost savings of these policy options were also evaluated with the help of The Center for Climate Strategies, who facilitated the process and provided technical assistance throughout the entire process, and who developed the Iowa Greenhouse Gas Emissions Inventory and Forecast in close consultation with the Iowa Department of Natural Resources (IDNR) and many Council and Sub-Committee members. About half of the policy options presented in this report will not only reduce GHG emissions but are highly cost-effective and will save Iowans money. Still other options may require significant investment but will create jobs, stimulate energy independence, and advance future regional or federal GHG programs.
Resumo:
El vertiginoso crecimiento de los centros urbanos, las tecnologías emergentes y la demanda de nuevos servicios por parte de la población plantea encaminar esfuerzos hacia el desarrollo de las ciudades inteligentes. Éste concepto ha tomado fuerza entre los sectores político, económico, social, académico, ambiental y civil; de forma paralela, se han generado iniciativas que conducen hacia la integración de la infraestructura, la tecnología y los servicios para los ciudadanos. En éste contexto, una de las problemáticas con mayor impacto en la sociedad es la seguridad vial. Es necesario contar con mecanismos que disminuyan la accidentalidad, mejoren la atención a incidentes, optimicen la movilidad urbana y planeación municipal, ayuden a reducir el consumo de combustible y la emisión de gases de efecto de invernadero, así como ofrecer información dinámica y efectiva a los viajeros. En este artículo se describen dos (2) enfoques que contribuyen de manera eficiente dicho problema: los videojuegos como juegos serios y los sistemas de transporte inteligente. Ambos enfoques están encaminados a evitar colisiones y su diseño e implementación requieren componentes altamente tecnológicos (e.g. sistemas telemáticos e informáticos, inteligencia artificial, procesamiento de imágenes y modelado 3D).