866 resultados para methionine sulfoxide
Resumo:
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met(29) > Met(30) > Met(13), with Met(79) being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Glycoxidation and lipoxidation reactions contribute to the chemical modification of proteins during the Maillard reaction. Reactive oxygen species, produced during the oxidation of sugars and lipids in these processes, irreversibly oxidize proteins. Methionine is particularly susceptible to oxidation, yielding the oxidation product methionine sulfoxide (MetSO). Here we describe a method for the analysis of MetSO using proteomic techniques. Using these techniques, we measured MetSO formation on the model protein RNase during aerobic incubations with glucose and arachidonate. We also evaluated the susceptibility of MetSO to reduction by NaBH4, a commonly used reductant in the analysis of Maillard reaction products.
Resumo:
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.
Resumo:
We have developed a new technique for quantifying methionine sulfoxide (MetSO) in protein to assess levels of oxidative stress in physiological systems. In this procedure, samples are hydrolyzed with methanesulfonic acid (MSA) in order to avoid the conversion of MetSO to methionine (Met) that occurs during hydrolysis of protein in HCl. The hydrolysate is fractionated on a cation exchange column to remove the nonvolatile MSA from amino acids, and the amino acids are then derivatized as their trimethylsilyl esters for analysis by selected ion monitoring-gas chromatography/mass spectrometry. The limit of detection of the assay is 200 pmol of MetSO per analysis, and the interassay coefficient of variation is 5.8%. Compared to current methods, the SIM-GC/MS assay avoids the potential for conversion of Met to MetSO during sample preparation, requires less sample preparation time, has lower variability, and uses mass spectrometry for sensitive and specific analyte detection.
Resumo:
The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of increased glycation and/or oxidation in the accelerated formation of glycoxidation products in diabetes, we measured levels of amino acid oxidation products, distinct from glycoxidative modifications of amino acids, as independent indicators of oxidative stress and damage to collagen in aging and diabetes. We show that ortho-tyrosine and methionine sulfoxide are formed in concert with Nepsilon-(carboxymethyl)lysine and pentosidine during glycoxidation of collagen in vitro, and that they also increase with age in human skin collagen. The age-adjusted levels of these oxidized amino acids in collagen was the same in diabetic and nondiabetic subjects, arguing that diabetes per se does not cause an increase in oxidative stress or damage to extracellular matrix proteins. These results provide evidence for an age-dependent increase in oxidative damage to collagen and support previous conclusions that the increase in glycoxidation products in skin collagen in diabetes can be explained by the increase in glycemia alone, without invoking a generalized, diabetes-dependent increase in oxidative stress.
Resumo:
Glycoxidation and lipoxidation reactions contribute to the chemical modification of proteins during the Maillard reaction. Reactive oxygen species, produced during the oxidation of sugars and lipids in these processes, irreversibly oxidize proteins. Methionine is particularly susceptible to oxidation, yielding the oxidation product methionine sulfoxide (MetSO). Here we describe a method for the analysis of MetSO using proteomic techniques. Using these techniques, we measured MetSO formation on the model protein RNase during aerobic incubations with glucose and arachidonate. We also evaluated the susceptibility of MetSO to reduction by NaBH4, a commonly used reductant in the analysis of Maillard reaction products.
Resumo:
Solid Ni(C(5)H(10)NO(3)S)(2) . 2H(2)O complex was prepared and characterized. Electronic absorption spectrum shows an octahedral geometry for the complex. Infrared spectroscopy analysis shows that the metal atom is coordinated to the ligand through (COO(-)) and (S = O) groups. Thermal analysis confirmed the composition of the complex and suggests that the water molecules are not coordinated to the metal ion. The complex shows extremely high solubility in water. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
A new palladium(II) complex with methionine sulfoxide was synthesized and characterized by a set of chemical and spectroscopic techniques. Elemental and mass spectrometry analyses of the solid complex fit to the composition [Pd(C5H10NO3S)(2)]center dot H2O. C-13 NMR, [H-1-N-15] NMR and infrared spectra indicate coordination of the amino acid to Pd(II) through the carboxylate and amino groups in a square planar geometry. The complex is soluble in water.Biological activity was evaluated by cytotoxic analysis using HeLa cells. Determination of cell death was assessed using a tetrazolium salt colorimetric assay, which reflects the cells viability. After incubation for 48 h, 20% of cell death was achieved at a concentration of 200 mu mol L-1 of the complex. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Powder X-ray diffraction data for methionine sulfoxide, C5H11NO3S, obtained from the commercial amino acid, are presented in this work. Monoclinic cell parameters are: a = 15.500 Angstrom; b = 3.820 Angstrom; c = 13.490 Angstrom; 8=97.300 degrees. (C) 2001 International Centre for Diffraction Data.
Resumo:
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO) 2]SO4 · H2O and [Cu(metSO)2] · H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.
Resumo:
A gene homologous to methionine sulfoxide reductase (msrA) was identified as the predicted ORF (cosmid 9379) in chromosome V of Saccharomyces cerevisiae encoding a protein of 184 amino acids. The corresponding protein has been expressed in Escherichia coli and purified to homogeneity. The recombinant yeast MsrA possessed the same substrate specificity as the other known MsrA enzymes from mammalian and bacterial cells. Interruption of the yeast gene resulted in a null mutant, ΔmsrA::URA3 strain, which totally lost its cellular MsrA activity and was shown to be more sensitive to oxidative stress in comparison to its wild-type parent strain. Furthermore, high levels of free and protein-bound methionine sulfoxide were detected in extracts of msrA mutant cells relative to their wild-type parent cells, under various oxidative stresses. These findings show that MsrA is responsible for the reduction of methionine sulfoxide in vivo as well as in vitro in eukaryotic cells. Also, the results support the proposition that MsrA possess an antioxidant function. The ability of MsrA to repair oxidative damage in vivo may be of singular importance if methionine residues serve as antioxidants.
Resumo:
The yeast peptide-methionine sulfoxide reductase (MsrA) was overexpressed in a Saccharomyces cerevisiae null mutant of msrA by using a high-copy plasmid harboring the msrA gene and its promoter. The resulting strain had about 25-fold higher MsrA activity than its parent strain. When exposed to either hydrogen peroxide, paraquat, or 2,2′-azobis-(2-amidinopropane) dihydrochloride treatment, the MsrA overexpressed strain grew better, had lower free and protein-bound methionine sulfoxide and had a better survival rate under these conditions than did the msrA mutant and its parent strain. Substitution of methionine with methionine sulfoxide in a medium lacking hydrogen peroxide had little effect on the growth pattern, which suggests that the oxidation of free methionine in the growth medium was not the main cause of growth inhibition of the msrA mutant. Ultraviolet A radiation did not result in obvious differences in survival rates among the three strains. An enhanced resistance to hydrogen peroxide treatment was shown in human T lymphocyte cells (Molt-4) that were stably transfected with the bovine msrA and exposed to hydrogen peroxide. The survival rate of the transfected strain was much better than its parent strain when grown in the presence of hydrogen peroxide. These results support the proposition that the msrA gene is involved in the resistance of yeast and mammalian cells to oxidative stress.
Resumo:
Pathogenic bacteria rely on adhesins to bind to host tissues. Therefore, the maintenance of the functional properties of these extracellular macromolecules is essential for the pathogenicity of these microorganisms. We report that peptide methionine sulfoxide reductase (MsrA), a repair enzyme, contributes to the maintenance of adhesins in Streptococcus pneumoniae, Neisseria gonorrhoeae, and Escherichia coli. A screen of a library of pneumococcal mutants for loss of adherence uncovered a MsrA mutant with 75% reduced binding to GalNAcbeta1-4Gal containing eukaryotic cell receptors that are present on type II lung cells and vascular endothelial cells. Subsequently, it was shown that an E. coli msrA mutant displayed decreased type I fimbriae-mediated, mannose-dependent, agglutination of erythrocytes. Previous work [Taha, M. K., So, M., Seifert, H. S., Billyard, E. & Marchal, C. (1988) EMBO J. 7, 4367-4378] has shown that mutants with defects in the pilA-pilB locus from N. gonorrhoeae were altered in their production of type IV pili. We show that pneumococcal MsrA and gonococcal PilB expressed in E. coli have MsrA activity. Together these data suggest that MsrA is required for the proper expression or maintenance of functional adhesins on the surfaces of these three major pathogenic bacteria.
Resumo:
Peptide methionine sulfoxide reductase (MsrA; EC 1.8.4.6) is a ubiquitous protein that can reduce methionine sulfoxide residues in proteins as well as in a large number of methyl sulfoxide compounds. The expression of MsrA in various rat tissues was determined by using immunocytochemical staining. Although the protein was found in all tissues examined, it was specifically localized to renal medulla and retinal pigmented epithelial cells, and it was prominent in neurons and throughout the nervous system. In addition, blood and alveolar macrophages showed high expression of the enzyme. The msrA gene was mapped to the central region of mouse chromosome 14, in a region of homology with human chromosomes 13 and 8p21.
Resumo:
An enzyme that reduces methionine sulfoxide [Met(O)] residues in proteins [peptide Met(O) reductase (MsrA), EC 1.8.4.6; originally identified in Escherichia coli] was purified from bovine liver, and the cDNA encoding this enzyme was cloned and sequenced. The mammalian homologue of E. coli msrA (also called pmsR) cDNA encodes a protein of 255 amino acids with a calculated molecular mass of 25,846 Da. This protein has 61% identity with the E. coli MsrA throughout a region encompassing a 199-amino acid overlap. The protein has been overexpressed in E. coli and purified to homogeneity. The mammalian recombinant MsrA can use as substrate, proteins containing Met(O) as well as other organic compounds that contain an alkyl sulfoxide group such as N-acetylMet(O), Met(O), and dimethyl sulfoxide. Northern analysis of rat tissue extracts showed that rat msrA mRNA is present in a variety of organs with the highest level found in kidney. This is consistent with the observation that kidney extracts also contained the highest level of enzyme activity.