973 resultados para metal chelating ability
Resumo:
Neurodegenerative diseases like Alzheimer's and Parkinson's disease are associated with elevated levels of iron, copper, and zinc and consequentially high levels of oxidative stress. Given the multifactorial nature of these diseases, it is becoming evident that the next generation of therapies must have multiple functions to combat multiple mechanisms of disease progression. Metal-chelating agents provide one such function as an intervention for ameliorating metal-associated damage in degenerative diseases. Targeting chelators to adjust localized metal imbalances in the brain, however, presents significant challenges. In this perspective, we focus on some noteworthy advances in the area of multifunctional metal chelators as potential therapeutic agents for neurodegenerative diseases. In addition to metal chelating ability, these agents also contain features designed to improve their uptake across the blood-brain barrier, increase their selectivity for metals in damage-prone environments, increase antioxidant capabilities, lower Abeta peptide aggregation, or inhibit disease-associated enzymes such as monoamine oxidase and acetylcholinesterase.
Resumo:
Polysaccharide extracted from Ulva pertusa (Chlorophyta) is a group of sulfated heteropolysaccharide; for simplicity, the sulfated polysaccharide is referred to as ulvan in this paper. In this study, different sulfate content ulvans were prepared with sulfur trioxide/N,N-diinethylformamide (SO3-DMF) in formamide, and their antioxidant activities were investigated including scavenging activity of superoxide and hydroxyl radicals, reducing Power and metal chelating ability. As expected, we obtained several satisfying results, as follows: firstly, high sulfate content ulvans had more effective scavenging activity on hydroxyl radical than natural ulvan. Secondly, comparing with natural ulvan, high sulfate content ulvans exhibited stronger reducing power. Thirdly, HU4 (sulfate content, 30.8%) and HU5 (sulfate content, 32.8%) showed more pronounce chelating ability on ferrous ion at high concentration than other samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Polysaccharides extracted from Ulva pertusa Kjellm ( Chlorophyta) are a group of sulfated heteropolysaccharides, the ulvans. In this study, different molecular weight ulvans were prepared by H2O2 degradation and their antioxidant activities investigated including superoxide and hydroxyl radical scavenging activity, reducing power and metal chelating ability. The molecular weights of natural and degraded ulvans were 151.7, 64.5, 58.0, and 28.2 kDa, respectively, as determined by high performance gel permeation chromatography. Among the four samples, U-3 ( the lowest molecular weight sample) showed significant inhibitory effects on superoxide and hydroxyl radicals with IC50 values of 22.1 mu g mL(-1) and 2.8 mg mL(-1); its reducing power and metal chelating ability were also the strongest among the four samples. All the other samples also demonstrated strong activity against superoxide radicals. The results indicated that molecular weight had a significant effect on the antioxidant activity of ulvan with low molecular weight ulvan having stronger antioxidant activity.
Resumo:
Peptide mass mapping analysis, utilizing a regenerable enzyme microreactor with metal-ion chelated adsorption of enzyme, combined with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was developed. Different procedures from the conventional approaches were adopted to immobilize the chelator onto the silica supports, that is, the metal chelating agent of iminodiacetic acid (IDA) was reacted with glycidoxypropyltrimethoxysilane (GLYMO) before its immobilization onto the inner wall of the fused-silica capillary pretreated with NH4HF2. The metal ion of copper and subsequently enzyme was specifically adsorbed onto the surface to form the immobilized enzyme capillary microreactor, which was combined with MALDI-TOF-MS to apply for the mass mapping analysis of nL amounts of protein samples. The results revealed that the peptide mapping could routinely be generated from 0.5 pmol protein sample in 15 min at 50degreesC, even 20 fmol cytochrome c could be well digested and detected.
Resumo:
The strong chelating ability of mercaptoacetic acid for certain metal ions is exploited for a new; kind of voltammetric sensor. Specifically, a glassy carbon electrode (GCE) surface was covalently covered br; mercaptoacetic acid. The preparation of mercap
Resumo:
The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.
Resumo:
A associação simbiótica de plantas leguminosas com bactérias do género Rhizobium é o maior e mais eficiente contribuinte de azoto fixado biologicamente (Somasegaran e Hoben, 1994; Zahran, 1999). No entanto, o constante aumento da poluição em solos agrícolas, nomeadamente a contaminação por metais devido à aplicação de fertilizantes e de lamas, está a tornar-se um problema ambiental cada vez mais preocupante (Alloway, 1995a; Giller et al., 1998; Permina et al., 2006; Thorsen et al., 2009; Wani et al., 2008), influenciando de forma negativa a persistência destas bactérias nos solos agrícolas, assim como a sua eficácia de nodulação (Broos et al., 2005; Wani et al., 2008;. Zhengwei et al., 2005). Desta forma, o estudo dos mecanismos de tolerância de Rhizobium a metais tornou-se uma área de investigação de elevada importância. Com o trabalho apresentado nesta tese pretendeu-se perceber melhor a tolerância Rhizobium leguminosarum ao cádmio (Cd), dando particular atenção a um mecanismo de tolerância previamente descrito em R. leguminosarum (Lima et al., 2006): a complexação intracelular de Cd pelo tripéptido glutationa (GSH). Assim, o principal objectivo deste trabalho foi perceber melhor qual a importância deste mecanismo nos níveis de tolerância de rizóbio ao Cd. Como já tinha sido descrito em trabalhos anteriores (Figueira et al., 2005; Lima et al., 2006), foi possível verificar que a estirpe mais tolerante ao metal apresenta níveis mais elevados de Cd e GSH intracelulares. Demonstrou-se ainda que a tolerância ao Cd está dependente da maior eficiência no mecanismo de complexação observada na estirpe tolerante, logo durante as primeiras 12 h de crescimento. Gomes et al. (2002) verificou que a acumulação de complexos GSH-Cd no citoplasma inibe a entrada de metal na célula. Como neste trabalho se observou um aumento nos níveis de Cd intracelular na estirpe tolerante ao longo do tempo, surgiu a hipótese dos complexos serem excretados para o espaço periplasmático. Os elevados níveis de GSH e de Cd determinados no espaço periplasmático corroboraram esta hipótese. Neste trabalho demonstrou-se ainda que a eficácia do mecanismo de complexação, depende da actividade enzimática de uma isoforma específica de GST, que apresentou um elevado acréscimo de actividade na presença do metal. Desta forma, os resultados desta tese indicam que, a maior tolerância de R. leguminosarum ao Cd, depende da capacidade das estirpes para induzir a síntese de GSH na presença de Cd e, simultaneamente aumentar a actividade enzimática da GST específica, optimizando assim o mecanismo de complexação de Cd intracelular.
Resumo:
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical beta-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 +/- 871.03 nM and 1,239.23 +/- 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 +/- 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologias, Universidade do Algarve, 2014
Resumo:
Synephrinase, an enzyme catalyzing the conversion of (−)-synephrine into p-hydroxyphenylacetaldehyde and methylamine, was purified to apparent homogeneity from the cell-free extracts of Arthrobacter synephrinum grown on (±)-synephrine as the sole source of carbon and nitrogen. A 40-fold purification was sufficient to produce synephrinase that is apparently homogeneous as judged by native polyacrylamide gel electrophoresis and has a specific activity of 1.8 μmol product formed /min/mg protein. Thus, the enzyme is a relatively abundant enzyme, perhaps comprising as much as 2.5% of the total protein. The enzyme essentially required a sulfhydryl compound for its activity. Metal ions like Mg2+, Ca2+, and Mn2+ stimulated the enzyme activity. Metal chelating agents, thiol reagents, denaturing agents, and metal ions like Zn2+, Hg2+, Ag1+, and Cu2+ inhibited synephrinase activity. Apart from (−)-synephrine, the enzyme acted upon (±)-octopamine and β-methoxysynephrine. Molecular oxygen was not utilized during the course of the reaction. The molecular mass of the enzyme as determined by Sephadex G-200 chromatography, was around 156,000. The enzyme was made up of four identical subunits with a molecular mass of 42,000.
Resumo:
Evidence was obtained for the participation of iron in the double hydroxylation reaction catalyzed by anthranilate hydroxylase from Aspergillus niger (UBC 814). Omission of iron from the growth medium gave inactive preparations of anthranilate hydroxylase which could be reactivated by incubating the enzyme preparations with ferric citrate. The enzyme was susceptible to inhibition by metal chelating agents. The Ki for o-phenanthroline, which inhibited the enzyme activity non-competitively with respect to anthranilate, was calculated to be 0.9 mM. The inhibition by o-phenanthroline was counteracted by ferric complexes such as ferric-ethylenediaminetetraacetic acid and ferric citrate. Anthranilate afforded protection against inhibition by o-phenanthroline.
Resumo:
2,3-Dihydroxybenzoic acid has been shown to be oxidized via the 3-oxoadipate pathway in the leaves of Tecoma stans. The formation of 2-carboxy-cis,cis-muconic acid, a muconolactone, 3-oxoadipic acid and carbon dioxide during its metabolism has been demonstrated using an extract of Tecoma leaves. The first reaction of the pathway, viz., the conversion of 2,3-dihydroxybenzoate to 2-carboxy-cis,cis-muconic acid has been shown to be catalysed by an enzyme designated as 2,3-dihydroxybenzoate 2,3-oxygenase. The enzyme has been partially purified and a few of its properties studied. The enzyme is very labile with a half-life of 3--4 h. It is maximally active with 2,3-dihydroxybenzoate as the substrate and does not exhibit any activity with catechol, 4-methyl catechol, 3,4-dihydroxybenzoic acid, etc. However, 2,3-dihydroxy-p-toluate and 2,3-dihydroxy-p-cumate are also oxidized by the enzyme by about 38% and 28% respectively, compared to 2,3-dihydroxybenzoate. Sulfhydryl reagents inhibit the enzyme reaction and the inhibition can be prevented by preincubation of the enzyme with the substrate. Substrate also affords protection to the enzyme against thermal inactivation. Sulfhydryl compounds strongly inhibit the reaction and the inhibition cannot be prevented by preincubation of the enzyme with its substrates. Data on the effect of metal ions as well as metal chelating agents suggest that copper is the metal cofactor of the enzyme. Evidence is presented which suggests that iron may not be participating in the overall catalytic mechanism.
Resumo:
The purification and some properties of the enzyme indoleacetaldoxime hydrolyase (EC 4.2.1.29) from the fungus Gibberella fujikuroi, which dehydrates indoleacetaldoxime (IAOX) to indoleacetonitrile (IAN), are described. The enzyme activity in the fungus is present only under certain culture conditions. It is a soluble enzyme, has an optimum pH at 7, shows an energy of activation of —15,670 cal/mole, and has a Michaelis constant of 1.7 × 10−4 Image at 30 °. It appears to be specific for IAOX, and 1 mole of IAN is produced per mole of IAOX utilized. The enzyme is inhibited by a number of aldoximes of which phenylacetaldoxime (PAOX) is the most potent inhibitor. Inhibition by PAOX is competitive (Ki = 2.2 × 10−8 Image ). The enzyme is inhibited by SH reagents such as p-hydroxymercuribenzoate and N-ethylmaleimide, and by a number of SH compounds such as cysteine, β-mercaptoethanol, and 2,3-dimercaptopropanol (BAL). However, glutathione activates the enzyme. Metal chelating agents such as 8-OH-quinoline and diethyl dithiocarbamate inhibit the enzyme; the inhibition is partly reversed by ferric citrate. Ascorbic acid, and particularly dehydroascorbic acid (DHA), are good activators of the enzyme. Several other biological oxidants had either no action or had a slight effect. Potassium cyanide activates the enzyme at low concentration but inhibits at higher concentrations. Reduction of the enzyme with NaBH4 reduces activity, and the effect is partly reversed by pyridoxal phosphate and also by DHA. The above properties indicate that both an SH function and an oxidized function are required for activity.
Resumo:
An enzyme which catalyzes the oxidative conversion of o-aminophenol to 2-amino-3-H-isophenoxazin-3-one has been purified 396-fold by using standard fractionation procedures. The enzyme is specific for o-aminophenol and has pH and temperature optima at 6.2 and 40 °, respectively. It is insensitive to metal chelating agents but is inhibited by several reducing substances. There is no cofactor or metal ion requirement for the reaction. A competitive type of inhibition was observed with structural analogs such as anthranilic acid and 3-hydroxyanthranilic acid. There are no free sulfhydryl groups in the enzyme, but preincubation of the enzyme with substrate or substrate analogs resulted in the liberation of titratable free sulfhydryl groups. The mechanism of biosynthesis of isophenoxazine ring is discussed.