147 resultados para metaheuristics
Resumo:
For the shop scheduling problems such as flow-shop, job-shop, open-shop, mixed-shop, and group-shop, most research focuses on optimizing the makespan under static conditions and does not take into consideration dynamic disturbances such as machine breakdown and new job arrivals. We regard the shop scheduling problem under static conditions as the static shop scheduling problem, while the shop scheduling problem with dynamic disturbances as the dynamic shop scheduling problem. In this paper, we analyze the characteristics of the dynamic shop scheduling problem when machine breakdown and new job arrivals occur, and present a framework to model the dynamic shop scheduling problem as a static group-shop-type scheduling problem. Using the proposed framework, we apply a metaheuristic proposed for solving the static shop scheduling problem to a number of dynamic shop scheduling benchmark problems. The results show that the metaheuristic methodology which has been successfully applied to the static shop scheduling problems can also be applied to solve the dynamic shop scheduling problem efficiently.
Resumo:
In this paper, three metaheuristics are proposed for solving a class of job shop, open shop, and mixed shop scheduling problems. We evaluate the performance of the proposed algorithms by means of a set of Lawrence’s benchmark instances for the job shop problem, a set of randomly generated instances for the open shop problem, and a combined job shop and open shop test data for the mixed shop problem. The computational results show that the proposed algorithms perform extremely well on all these three types of shop scheduling problems. The results also reveal that the mixed shop problem is relatively easier to solve than the job shop problem due to the fact that the scheduling procedure becomes more flexible by the inclusion of more open shop jobs in the mixed shop.
Resumo:
Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Optimised search heuristics: combining metaheuristics and exact methods to solve scheduling problems
Resumo:
Tese dout., Matemática, Investigação Operacional, Universidade do Algarve, 2009
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
In an evermore competitive environment, power distribution companies need to continuously monitor and improve the reliability indices of their systems. The network reconfiguration (NR) of a distribution system is a technique that well adapts to this new deregulated environment for it allows improvement of system reliability indices without the onus involved in procuring new equipment. This paper presents a reliability-based NR methodology that uses metaheuristic techniques to search for the optimal network configuration. Three metaheuristics, i.e. Tabu Search, Evolution Strategy, and Differential Evolution, are tested using a Brazilian distribution network and the results are discussed. © 2009 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a mathematical model adapted from literature for the crop rotation problem with demand constraints (CRP-D). The main aim of the present work is to study metaheuristics and their performance in a real context. The proposed algorithms for solution of the CRP-D are a genetic algorithm, a simulated annealing and hybrid approaches: a genetic algorithm with simulated annealing and a genetic algorithm with local search algorithm. A new constructive heuristic was also developed to provide initial solutions for the metaheuristics. Computational experiments were performed using a real planting area and semi-randomly generated instances created by varying the number, positions and dimensions of the lots. The computational results showed that these algorithms determined good feasible solutions in a short computing time as compared with the time spent to get optimal solutions, thus proving their efficacy for dealing with this practical application of the CRP-D.
Resumo:
In this thesis we made the first steps towards the systematic application of a methodology for automatically building formal models of complex biological systems. Such a methodology could be useful also to design artificial systems possessing desirable properties such as robustness and evolvability. The approach we follow in this thesis is to manipulate formal models by means of adaptive search methods called metaheuristics. In the first part of the thesis we develop state-of-the-art hybrid metaheuristic algorithms to tackle two important problems in genomics, namely, the Haplotype Inference by parsimony and the Founder Sequence Reconstruction Problem. We compare our algorithms with other effective techniques in the literature, we show strength and limitations of our approaches to various problem formulations and, finally, we propose further enhancements that could possibly improve the performance of our algorithms and widen their applicability. In the second part, we concentrate on Boolean network (BN) models of gene regulatory networks (GRNs). We detail our automatic design methodology and apply it to four use cases which correspond to different design criteria and address some limitations of GRN modeling by BNs. Finally, we tackle the Density Classification Problem with the aim of showing the learning capabilities of BNs. Experimental evaluation of this methodology shows its efficacy in producing network that meet our design criteria. Our results, coherently to what has been found in other works, also suggest that networks manipulated by a search process exhibit a mixture of characteristics typical of different dynamical regimes.
Resumo:
When designing metaheuristic optimization methods, there is a trade-off between application range and effectiveness. For large real-world instances of combinatorial optimization problems out-of-the-box metaheuristics often fail, and optimization methods need to be adapted to the problem at hand. Knowledge about the structure of high-quality solutions can be exploited by introducing a so called bias into one of the components of the metaheuristic used. These problem-specific adaptations allow to increase search performance. This thesis analyzes the characteristics of high-quality solutions for three constrained spanning tree problems: the optimal communication spanning tree problem, the quadratic minimum spanning tree problem and the bounded diameter minimum spanning tree problem. Several relevant tree properties, that should be explored when analyzing a constrained spanning tree problem, are identified. Based on the gained insights on the structure of high-quality solutions, efficient and robust solution approaches are designed for each of the three problems. Experimental studies analyze the performance of the developed approaches compared to the current state-of-the-art.
Resumo:
In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations efficiently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem: the first one is based on Iterated Local Search; the second on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods but provide solutions which may allow distribution warehouses to be operated significantly more efficiently.
Resumo:
In this paper we propose four approximation algorithms (metaheuristic based), for the Minimum Vertex Floodlight Set problem. Urrutia et al. [9] solved the combinatorial problem, although it is strongly believed that the algorithmic problem is NP-hard. We conclude that, on average, the minimum number of vertex floodlights needed to illuminate a orthogonal polygon with n vertices is n/4,29.
Resumo:
In this paper we focus on the selection of safeguards in a fuzzy risk analysis and management methodology for information systems (IS). Assets are connected by dependency relationships, and a failure of one asset may affect other assets. After computing impact and risk indicators associated with previously identified threats, we identify and apply safeguards to reduce risks in the IS by minimizing the transmission probabilities of failures throughout the asset network. However, as safeguards have associated costs, the aim is to select the safeguards that minimize costs while keeping the risk within acceptable levels. To do this, we propose a dynamic programming-based method that incorporates simulated annealing to tackle optimizations problems.