817 resultados para metaheuristic algorithm
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.
Resumo:
La compréhension de la structure d’un logiciel est une première étape importante dans la résolution de tâches d’analyse et de maintenance sur celui-ci. En plus des liens définis par la hiérarchie, il existe un autre type de liens entre les éléments du logiciel que nous appelons liens d’adjacence. Une compréhension complète d’un logiciel doit donc tenir compte de tous ces types de liens. Les outils de visualisation sont en général efficaces pour aider un développeur dans sa compréhension d’un logiciel en lui présentant l’information sous forme claire et concise. Cependant, la visualisation simultanée des liens hiérarchiques et d’adjacence peut donner lieu à beaucoup d’encombrement visuel, rendant ainsi ces visualisations peu efficaces pour fournir de l’information utile sur ces liens. Nous proposons dans ce mémoire un outil de visualisation 3D qui permet de représenter à la fois la structure hiérarchique d’un logiciel et les liens d’adjacence existant entre ses éléments. Notre outil utilise trois types de placements différents pour représenter la hiérarchie. Chacun peut supporter l’affichage des liens d’adjacence de manière efficace. Pour représenter les liens d’adjacence, nous proposons une version 3D de la méthode des Hierarchical Edge Bundles. Nous utilisons également un algorithme métaheuristique pour améliorer le placement afin de réduire davantage l’encombrement visuel dans les liens d’adjacence. D’autre part, notre outil offre un ensemble de possibilités d’interaction permettant à un usager de naviguer à travers l’information offerte par notre visualisation. Nos contributions ont été évaluées avec succès sur des systèmes logiciels de grande taille.
Resumo:
This paper presents a comparison of reactive power support in distribution networks provided by switched Capacitor Banks (CBs) and Distributed Generators (DGs). Regarding switched CBs, a Tabu Search metaheuristic algorithm is developed to determine their optimal operation with the objective of reducing the power losses in the lines on the system, while meeting network constraints. on the other hand, the optimal operation of DGs is analyzed through an evolutionary Multi-Objective (MO) programming approach. The objectives of such approach are the minimization of power losses and operation cost of the DGs. The comparison of the reactive power support provided by switched CBs and DGs is carried out using a modified IEEE 34 bus distribution test system.
Resumo:
This paper presents the application of a new metaheuristic algorithm to solve the transmission expansion planning problem. A simple heuristic, using a relaxed network model associated with cost perturbation, is applied to generate a set of high quality initial solutions with different topologies. The population is evolved using a multi-move path-relinking with the objective of finding minimum investment cost for the transmission expansion planning problem employing the DC representation. The algorithm is tested on the southern Brazilian system, obtaining the optimal solution for the system with better performance than similar metaheuristics algorithms applied to the same problem. ©2010 IEEE.
Resumo:
This paper presents a metaheuristic algorithm inspired in evolutionary computation and swarm intelligence concepts and fundamentals of echolocation of micro bats. The aim is to optimize the mono and multiobjective optimization problems related to the brushless DC wheel motor problems, which has 5 design parameters and 6 constraints for the mono-objective problem and 2 objectives, 5 design parameters, and 5 constraints for multiobjective version. Furthermore, results are compared with other optimization approaches proposed in the recent literature, showing the feasibility of this newly introduced technique to high nonlinear problems in electromagnetics.
Resumo:
The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.
Resumo:
International audience
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
The Capacitated Centered Clustering Problem (CCCP) consists of defining a set of p groups with minimum dissimilarity on a network with n points. Demand values are associated with each point and each group has a demand capacity. The problem is well known to be NP-hard and has many practical applications. In this paper, the hybrid method Clustering Search (CS) is implemented to solve the CCCP. This method identifies promising regions of the search space by generating solutions with a metaheuristic, such as Genetic Algorithm, and clustering them into clusters that are then explored further with local search heuristics. Computational results considering instances available in the literature are presented to demonstrate the efficacy of CS. (C) 2010 Elsevier Ltd. All rights reserved.