740 resultados para metabolism, muscle, energetics, exercise, heart


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [(31)P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to examine the influence of sprint training on metabolism and exercise performance during sprint exercise, 16 recreationally-active, untrained, men (TO2peak= 3.8+/-0.1 1.min(-1)) were randomly assigned to either a training (n=8) or control group (n=8). Each subject performed a 30-sec cycle sprint and a test to measure VO2peak before and after eight weeks of sprint training. The training group completed a series of sprints three times per week which progressed from three 30-sec cycle sprints in weeks 1 and 2, to six 30-sec sprints in weeks 7 and 8. Three mins of passive recovery separated each sprint throughout the training period. Muscle samples were obtained at rest and immediately following the pre- and post-training sprints and analysed for high energy phosphagens, glycogen and lactate; the activities of both phosphofructokinase (PFK) and citrate synthase (CS) were also measured and muscle fibre types were quantified, Training resulted in a 7.1% increase in mean power output (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malnutrition is a common health problem in developing countries and is associated with alterations in glucose metabolism. In the present study we examine the effects of chronic aerobic exercise on some aspects of glucose metabolism in protein-deficient rats. Two groups of adult rats (90 days old) were used: Normal protein group (17%P)- kept on a normal protein diet during intra-uterine and postnatal life and Low protein group (6%P)- kept on a low protein diet during intrauterine and post natal life. After weaning (21 days old), half of the 17%P and 6%P rats were assigned to a Sedentary (Sed) or an Exercise-trained (Exerc = swimming, 1 hr/day, 5 days/week, supporting an overload of 5% of body weight) subgroup. The area under blood glucose concentration curve (Delta G) after an oral glucose load was higher in 17%P Sed rats (20%) than in other rats and lower in 6%P Exerc (11%) in relation to 6% Sed rats. The post-glucose increase in blood insulin (Delta I) was also higher in 17%P Sed (9%) than in other rats. on the other hand, the glucose disappearance rate after exogenous subcutaneous insulin administration (Kitt) was lower in 17%P Sed rats (66%) than in other rats. Glucose uptake by soleus muscle was higher in Exerc rats (30%) than in Sed rats. Soleus muscle glycogen synthesis was reduced in 6%P Sed rats (41%) compared to 17%P Sed rats but was restored in 6%P Exerc rats. Glycogen concentration was elevated in Exerc (32%) rats in comparison to Sed rats. The present results indicate that glucose-induced insulin release is reduced in rats fed low protein diet. This defect is counteracted by an increase in the sensitivity of the target tissues to insulin and glucose homeostasis is maintained. This adaptation allows protein deficient rats to preserve the ability to appropriately adapt to aerobic physical exercise training. (C) 2000 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of the present review is to assimilate current knowledge concerning the differing signalling transduction cascades that control muscle mass development and affect skeletal muscle phenotype following exercise or nutritional uptake. Effects of mechanical loading on protein synthesis are discussed. Muscle growth control is regulated by the interplay of growth promoting and growth suppressing factors, which act in concert. Much emphasis has been placed on understanding how increases in the rate of protein synthesis are induced in skeletal muscle during the adaptive process. One key point to emerge is that protein synthesis following resistance exercise or increased nutrient availability is mediated through changes in signal transduction involving the phosphorylation of mTOR and sequential activation of downstream targets. On the other hand, AMPK activation plays an important role in the inhibition of protein synthesis by suppressing the function of multiple translation regulators of the mTOR signalling pathway in response to cellular energy depletion and low metabolic conditions. The effects of exercise and/or nutritional uptake on the activation of signalling molecules that regulate protein synthesis are highlighted, providing a better understanding of the molecular changes in the cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the combined effect of meal size and temperature on the aerobic metabolism and energetics of digestion in Boa constrictor amarali. Oxygen uptake rates ((V) over dot o(2)) and the. duration of the digestion were determined in snakes fed with meals equaling to 5%, 10%, 20%, and 40% of the snake's body mass at 25degrees and 30 degreesC. The maximum (V) over dot o(2) values attained during digestion were greater at 30 degreesC than at 25 degreesC. Both maximal (V) over dot (o2) values and the duration of the specific dynamic action. (SDA) were attained sooner at 30 degreesC than at 25 degreesC. Therefore, the temperature effect on digestion in Boa is characterized by the shortening of the SDA duration at the expense of increased. Energy allocated to SDA was not affected by meal size but. was greater at 25 degreesC compared to 30 degreesC. This indicates that a postprandial thermophilic response can be advantageous not only by decreasing the duration of digestion but also by improving digestive efficiency. Maximal (V) over dot o(2) and SDA duration. increased with meal size at both temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to investigate the potential benefits of cold water immersion (CWI) and active recovery (AR) on blood lactate concentration ([Lac]) and heart rate variability (HRV) indices following high-intensity exercise. 20 male subjects were recruited. on the first visit, an incremental test was performed to determine maximal oxygen consumption and the associated speed (MAS). The remaining 3 visits for the performance of constant velocity exhaustive tests at MAS and different recovery methods (6 min) were separated by 7-day intervals [randomized: CWI, AR or passive recovery (PR)]. The CWI and AR lowered [Lac] (p < 0.05) at 11, 13 and 15 min after exercise cessation in comparison to PR. There was a 'time' and 'recovery mode' interaction for 2 HRV indices: standard deviation of normal R-R intervals (SDNN) (partial eta squared = 0.114) and natural log of low-frequency power density (lnLF) (partial eta squared = 0.090). CWI presented significantly higher SDNN compared to PR at 15 min of recovery (p < 0.05). In addition, greater SDNN values were found in CWI vs. AR during the application of recovery interventions, and at 30 and 75 min post-exercise (p < 0.05 for all differences). The lnLF during the recovery interventions and at 75 min post-exercise was greater using CWI compared with AR (p < 0.05). For square root of the mean of the sum of the squares of differences between adjacent R-R intervals (RMSSD) and natural log of high-frequency power density (lnHF), a moderate effect size was found between CWI and PR during the recovery interventions and at 15 min post-exercise. Our findings show that AR and CWI offer benefits regarding the removal of [Lac] following high-intensity exercise. While limited, CWI results in some improvement in post-exercise cardiac autonomic regulation compared to AR and PR. Further, AR is not recommended if the aim is to accelerate the parasympathetic reactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] BACKGROUND: In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied. METHODS AND RESULTS: HR, Q, oxygen uptake, mean arterial pressure, and leg blood flow were determined at rest and during cycle exercise with and without vagal blockade with glycopyrrolate in 7 healthy lowlanders after 9 weeks' residence at >/=5260 m (ALT). At ALT, glycopyrrolate increased resting HR by 80 bpm (73+/-4 to 153+/-4 bpm) compared with 53 bpm (61+/-3 to 114+/-6 bpm) at sea level (SL). During exercise at ALT, glycopyrrolate increased HR by approximately 40 bpm both at submaximal (127+/-4 to 170+/-3 bpm; 118 W) and maximal (141+/-6 to 180+/-2 bpm) exercise, whereas at SL, the increase was only by 16 bpm (137+/-6 to 153+/-4 bpm) at 118 W, with no effect at maximal exercise (181+/-2 bpm). Despite restoration of maximal HR to SL values, glycopyrrolate had no influence on Q, which was reduced at ALT. Breathing FIO(2)=0.55 at peak exercise restored Q and power output to SL values. CONCLUSIONS: Enhanced parasympathetic neural activity accounts for the lowering of HR during exercise at ALT without influencing Q. The abrupt restoration of peak exercise Q in chronic hypoxia to maximal SL values when arterial PO(2) and SO(2) are similarly increased suggests hypoxia-mediated attenuation of Q.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering represents an attractive approach for the treatment of congestive heart failure. The influence of the differentiation of myogenic graft for functional recovery is not defined. We engineered a biodegradable skeletal muscle graft (ESMG) tissue and investigated its functional effect after implantation on the epicardium of an infarcted heart segment. ESMGs were synthesized by mixing collagen (2 mg/mL), Matrigel (2 mg/mL), and rat skeletal muscle cells (10(6)). Qualitative and quantitative aspects of ESMGs were optimized. Two weeks following coronary ligation, the animals were randomized in three groups: ESMG glued to the epicardial surface with fibrin (ESMG, n = 7), fibrin alone (fibrin, n = 5), or sham operation (sham, n = 4). Echocardiography, histology, and immunostaining were performed 4 weeks later. A cohesive three-dimensional tissular structure formed in vitro within 1 week. Myoblasts differentiated into randomly oriented myotubes. Four weeks postimplantation, ESMGs were vascularized and invaded by granulation tissue. Mean fractional shortening (FS) was, however, significantly increased in the ESMG group as compared with preimplantation values (42 +/- 6 vs. 33 +/- 5%, P < 0.05) and reached the values of controlled noninfarcted animals (control, n = 5; 45 +/- 3%; not significant). Pre- and postimplantation FS did not change over these 4 weeks in the sham group and the fibrin-treated animals. This study showed that it is possible to improve systolic heart function following myocardial infarction through implantation of differentiated muscle fibers seeded on a gel-type scaffold despite a low rate of survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few studies have focused on the metabolic responses to alternating high- and low-intensity exercise and, specifically, compared these responses to those seen during constant-load exercise performed at the same average power output. This study compared muscle metabolic responses between two patterns of exercise during which the intensity was either constant and just below critical power (CP) or that oscillated above and below CP. Six trained males (mean +/- SD age 23.6 +/- 2.6 y) completed two 30-minute bouts of cycling (alternating and constant) at an average intensity equal to 90% of CR The intensity during alternating exercise varied between 158% CP and 73% CP. Biopsy samples from the vastus lateralis muscle were taken before (PRE), at the midpoint and end (POST) of exercise and analysed for glycogen, lactate, PCr and pH. Although these metabolic variables in muscle changed significantly during both patterns of exercise, there were no significant differences (p > 0.05) between constant and alternating exercise for glycogen (PRE: 418.8 +/- 85 vs. 444.3 +/- 70; POST: 220.5 +/- 59 vs. 259.5 +/- 126mmol.kg(-1) dw), lactate (PRE: 8.5 +/- 7.7 vs. 8.5 +/- 8.3; POST: 49.9 +/- 19.0 vs. 42.6 +/- 26.6 mmol.kg(-1)dw), phosphocreatine (PRE: 77.9 +/- 11.6 vs. 75.7 +/- 16.9; POST: 65.8 +/- 12.1 vs. 61.2 +/- 12.7mmol.kg(-1)dw) or pH (PRE: 6.99 +/- 0.12 vs. 6.99 +/- 0.08; POST: 6.86 +/- 0.13 vs. 6.85 +/- 0.06), respectively. There were also no significant differences in blood lactate responses to the two patterns of exercise. These data suggest that, when the average power output is similar, large variations in exercise intensity exert no significant effect on muscle metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL-10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that lipids are transferred from lymphocytes (Ly) to different cell types including macrophages. enterocytes, and pancreatic beta cells in co-culture This study investigated whether [(14)C]-labeled fatty acids (FA) can be transferred from Ly to skeletal muscle (SM), and the effects of exercise on such phenomenon Ly obtained from exercised (EX) and control (C) male Wistar rats were preloaded with the [(14)C]-labeled free FA palmitic (PA), oleic (OA), linoleic (LA), or arachidonic (AA) Radioactively loaded Ly were then co-cultured with SM from the same Ly donor animals Substantial amounts of FA were transferred to SM being the profile PA = OA > AA > LA to the C group. and PA > OA > LA > AA to the EX group These FA were incorporated predominantly as phospholipids (PA = 66 75%: OA = 63 09%, LA = 43 86%, AA - 47 40%) in the C group and (PA = 63 99% OA = 52 72%, LA = 55 99%, AA = 63 40%) in the EX group Also in this group, the remaining radioactivity from AA, LA, and OA acids was mainly incorpoiated in structural and energetic lipids These results support the hypothesis that Ly are able to export lipids to SM in co-culture Furthermore. exercise modulates the lipid transference profile, and its incorporation on SM The overall significance of this phenomenon in vivo remains to be elucidated. Copyright (C) 2010 John Wiley & Sons, Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)