977 resultados para metabolic bone diseases
Resumo:
Background: The aim was to evaluate the presence of metabolic bone disease (MBD) in patients with Crohn’s disease (CD) and to identify potential etiologic factors. Methods: The case–control study included 99 patients with CD and 56 controls with a similar age and gender distribution. Both groups had dual-energy x-ray absorptionmetry and a nutritional evaluation. Single nucleotide polymorphisms at the IL1, TNF-a, LTa, and IL-6 genes were analyzed in patients only. Statistical analysis was performed using SPSS software. Results: The prevalence of MBD was significantly higher in patients (P ¼ 0.006). CD patients with osteoporosis were older (P < 0.005), small bowel involvement and surgical resections were more frequent (P < 0.005), they more often exhibited a penetrating or stricturing phenotype (P < 0.05), duration of disease over 15 years (P < 0.005), and body mass index (BMI) under 18.5 kg/m2 (P < 0.01) were more often found. No association was found with steroid use. Patients with a Z-score < 2.0 more frequently had chronic active disease (P < 0.05). With regard to diet, low vitamin K intake was more frequent (P ¼ 0.03) and intake of total, monounsaturated, and polyunsaturated fat was higher in patients with Z-score < 2.0 (P < 0.05). With respect to genetics, carriage of the polymorphic allele for LTa252 A/G was associated with a higher risk of osteoporosis (P ¼ 0.02). Regression analysis showed that age over 40 years, chronic active disease, and previous colonic resections were independently associated with the risk of developing MBD. Conclusions: The prevalence of MBD was significantly higher in CD patients. Besides the usual risk factors, we observed that factors related to chronic active and long-lasting disease increased the risk of MBD.
Resumo:
International audience
Resumo:
Background Roux-en-Y gastric bypass (RYGBP) has been found to be the most efficient way to lose weight and maintain the weight loss in morbid obesity. However, with the formation of a new stomach and the modification of intestinal anatomy, there are significant changes on physiological properties of these organs that lead to nutrient deficiency, including calcium. The objectives of this study were to evaluate calcium intake, bone metabolism, and prevalence of metabolic bone disease in women subjected to RYGBP after 8 years. Methods Food frequency questionnaire and 3-day dietary recall, laboratory tests of bone metabolism and bone mineral density were accessed. Results Calcium intake was below the recommendation in all women. Serum PTH and alkaline phosphatase were elevated, whereas vitamin D and urinary calcium were significantly lower. Also, a higher prevalence of metabolic bone disease than the one expected for the normal population at the same age was noted. Conclusion These data suggest that metabolic bone disease could be a complication of this type of surgery.
Resumo:
Purpose: The aim of this study was to quantitatively evaluate and qualitatively describe autogenous bone graft healing with or without an expanded polytetrafluoroethylene (e-PTFE) membrane in ovariectornized rats. Materials and Methods: Eighty Wistar rats, weighing approximately 300 g each, were used. A graft was obtained from the parietal bone and fixed to the sidewall of each animal`s left mandibular ramus. The animals were randomly divided into four experimental groups (n = 20 in each group): group 1, sham operated and autogenous bone graft only- group 2, sham operated and autogenous bone graft covered by e-PTFE membrane; group 3, ovariectornized (OVX) and autogenous bone graft only- group 4, OVX and autogenous bone graft covered by e-PTFE membrane. The animals were sacrificed at five different time points: immediately after grafting or at 7, 21, 45, or 60 days after grafting. Histologic examination and morphometric measurement of the sections were performed, and values were submitted to statistical analyses. Results: Both groups (sham and OVX) experienced loss of the original graft volume when it was not covered by the membrane, whereas use of the membrane resulted in additional bone formation beyond the edges of the graft and under the membrane. Histologic analysis showed integration of the grafts in all animals, although a larger number of marrow spaces was found in OVX groups. Conclusions: Association of bone graft with an e-PTFE membrane resulted in maintenance of its original volume as well as formation of new bone that filled the space under the membrane. Osteopenia did not influence bone graft repair, regardless of whether or not it was associated with e-PTFE membrane, but descriptive histologic analysis showed larger numbers of marrow spaces in the bone graft and receptor bed and formation of new bone in the OVX animals. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1074-1082
Resumo:
Considerable progress has been achieved in recent years in treating children affected by bone diseases. Advances in the understanding of the molecular pathophysiology of genetic bone diseases have led to the development of enzyme replacement therapies for various lysosomal storage diseases, following the breakthrough initiated in treating Gaucher disease. Clinical studies are underway with tailored molecules correcting bone fragility and alleviating chronic bone pain and other manifestations of hypophosphatasia, or promoting growth of long bones in achondroplasia patients. We further report our very encouraging experience with intravenous bisphosphonate treatment in children suffering from secondary osteopenia and the high prevalence of calcium and vitamin D deficits in these severely disabled children.
Resumo:
During their lifetime, 20% of men will suffer from a fracture secondary to osteoporosis, and morbidity and mortality of a hip fracture in men are more severe than in women. Despite these facts, there are only few studies on osteoporosis in men. Hyopgonadism is a known risk factor for bone mineral density decrease. Hypogonadism can be found in patients diagnosed with prostate cancer who are receiving androgen deprivation therapy, but can also be discovered in patients with male infertility or erectile dysfunction. Urologists have central role in men's health aftercare, and therefore have key role in the screening and in the multidisciplinary treatment of osteoporosis and osteopenia.
Resumo:
Bone metabolism involves a complex balance between the deposition of matrix and mineralization and resorption. There is now good evidence that dietary components and herbal products can influence these processes, particularly by inhibiting bone resorption, thus having beneficial effects on the skeleton. For example, it has been reported that a number of common vegetables, including onion, garlic and parsley, can inhibit bone resorption in ovariectomized rats. Essential oils derived from sage, rosemary, thyme and other herbs inhibit osteoclast activity in vitro and in vitro and leading to an increase in bone mineral density. Soya, a rich source of isoflavones, has shown promising results and epidemiological evidence to support a use in maintaining bone health, and various traditional herbal formulae in Chinese and Ayurvedic medicine also have demonstrable effects in pharmacological models of osteoporosis. Recently, cannabinoids have been described as having positive effects on osteoblast differentiation, and the presence of cannabinoid receptors in bone tissue indicates a more complex role in bone metabolism than previously thought. The first part of this review briefly discusses normal bone metabolism and disorders caused by its disruption, with particular reference to osteoporosis and current pharmacological treatments. The effects of natural products on bone and connective tissue are then discussed, to include items of diet, herbal extracts and food supplements, with evidence for their efficacy outlined. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Purpose: The aim of this study was to quantitatively evaluate and qualitatively describe autogenous bone graft healing with or without an expanded polytetrafluoroethylene (e-PTFE) membrane in ovariectornized rats. Materials and Methods: Eighty Wistar rats, weighing approximately 300 g each, were used. A graft was obtained from the parietal bone and fixed to the sidewall of each animal's left mandibular ramus. The animals were randomly divided into four experimental groups (n = 20 in each group): group 1, sham operated and autogenous bone graft only- group 2, sham operated and autogenous bone graft covered by e-PTFE membrane; group 3, ovariectornized (OVX) and autogenous bone graft only- group 4, OVX and autogenous bone graft covered by e-PTFE membrane. The animals were sacrificed at five different time points: immediately after grafting or at 7, 21, 45, or 60 days after grafting. Histologic examination and morphometric measurement of the sections were performed, and values were submitted to statistical analyses. Results: Both groups (sham and OVX) experienced loss of the original graft volume when it was not covered by the membrane, whereas use of the membrane resulted in additional bone formation beyond the edges of the graft and under the membrane. Histologic analysis showed integration of the grafts in all animals, although a larger number of marrow spaces was found in OVX groups. Conclusions: Association of bone graft with an e-PTFE membrane resulted in maintenance of its original volume as well as formation of new bone that filled the space under the membrane. Osteopenia did not influence bone graft repair, regardless of whether or not it was associated with e-PTFE membrane, but descriptive histologic analysis showed larger numbers of marrow spaces in the bone graft and receptor bed and formation of new bone in the OVX animals. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1074-1082
Resumo:
One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.
Resumo:
BACKGROUND/AIM: Raloxifene is the first selective estrogen receptor modulator that has been approved for the treatment and prevention of osteoporosis in postmenopausal women in Europe and in the US. Although raloxifene reduces the risk of invasive breast cancer in postmenopausal women with osteoporosis and in postmenopausal women at high risk for invasive breast cancer, it is approved in that indication in the US but not in the EU. The aim was to characterize the clinical profiles of postmenopausal women expected to benefit most from therapy with raloxifene based on published scientific evidence to date. METHODS: Key individual patient characteristics relevant to the prescription of raloxifene in daily practice were defined by a board of Swiss experts in the fields of menopause and metabolic bone diseases and linked to published scientific evidence. Consensus was reached about translating these insights into daily practice. RESULTS: Through estrogen agonistic effects on bone, raloxifene reduces biochemical markers of bone turnover to premenopausal levels, increases bone mineral density (BMD) at the lumbar spine, proximal femur, and total body, and reduces vertebral fracture risk in women with osteopenia or osteoporosis with and without prevalent vertebral fracture. Through estrogen antagonistic effects on breast tissue, raloxifene reduces the risk of invasive estrogen-receptor positive breast cancer in postmenopausal women with osteoporosis and in postmenopausal women at high risk for invasive breast cancer. Finally, raloxifene increases the incidence of hot flushes, the risk of venous thromboembolic events, and the risk of fatal stroke in postmenopausal women at increased risk for coronary heart disease. Postmenopausal women in whom the use of raloxifene is considered can be categorized in a 2 × 2 matrix reflecting their bone status (osteopenic or osteoporotic based on their BMD T-score by dual energy X-ray absorptiometry) and their breast cancer risk (low or high based on the modified Gail model). Women at high risk of breast cancer should be considered for treatment with raloxifene. CONCLUSION: Postmenopausal women between 50 and 70 years of age without climacteric symptoms with either osteopenia or osteoporosis should be evaluated with regard to their breast cancer risk and considered for treatment with raloxifene within the framework of its contraindications and precautions.
Resumo:
Metastatic bone lesions are commonly associated with prostate cancer affecting approximately 60-80% of the patients. The progression of prostate cancer into an advanced stage is a complex process and its molecular mechanisms are poorly understood. So far, no curative treatment is available for advanced stages of prostate cancer. Bisphosphonates (BPs) are synthetic pyrophosphate analogues, which are used as therapeutics for various metabolic bone diseases because of their ability to inhibit osteoclastic bone resorption. Nitrogen-containing bisphosphonates block the function of osteoclasts by disturbing the vesicular traffic and the mevalonate pathway -related enzymes, for example farnesyl diphosphate synthase, which is involved in post-translational isoprenylation of small GTPases. In addition, the anti-proliferative, anti-invasive and pro-apoptotic effects of nitrogen-containing bisphosphonates on various cancer cell lines have been reported. The aim of this thesis work was to clarify the effects of bisphosphonates on prostate cancer cells, focusing on the mechanisms of adhesion, invasion and migration. Furthermore, the role of the mevalonate pathway and prenylation reactions in invasion and regulation of the cytoskeleton of prostate cancer cells were examined. Finally, the effects of alendronate on cytoskeleton- and actin-related proteins in prostate cancer cells were studied in vitro and in vivo. The results showed that the nitrogen-containing bisphosphonate alendronate inhibited the adhesion of prostate cancer cells to various extracellular matrix proteins and migration and invasion in vitro. Inhibition of invasion and migration was reversed by mevalonate pathway intermediates. The blockage of the prenylation transferases GGTase I and FTase inhibited the invasion, migration and actin organization of prostate cancer cells. The marked decrease of cofilin was observed by the prenylation inhibitors used. Inhibition of GGTase I also disrupted the regulation of focal adhesion kinase and paxillin. In addition, alendronate disrupted the cytoskeletal organization and decreased the level of cofilin in vitro and in vivo. The decrease of the cofilin level by alendronate could be one of the key mechanisms behind the observed inhibition of migration and invasion. Based on the effects of nitrogen-containing bisphosphonates on tumor cell invasion and cytoskeletal organization, they can be suggested to be developed as therapeutics for inhibiting prostate cancer metastasis.
Resumo:
The aim of this review article is to provide an overview of the role of pigs as a biomedical model for humans. The usefulness and limitations of porcine models have been discussed in terms of metabolic, cardiovascular, digestive and bone diseases in humans. Domestic pigs and minipigs are the main categories of pigs used as biomedical models. One drawback of minipigs is that they are in short supply and expensive compared with domestic pigs, which in contrast cost more to house, feed and medicate. Different porcine breeds show different responses to the induction of specific diseases. For example, ossabaw minipigs provide a better model than Yucatan for the metabolic syndrome as they exhibit obesity, insulin resistance and hypertension, all of which are absent in the Yucatan. Similar metabolic/physiological differences exist between domestic breeds (e.g. Meishan v. Pietrain). The modern commercial (e.g. Large White) domestic pig has been the preferred model for developmental programming due to the 2- to 3-fold variation in body weight among littermates providing a natural form of foetal growth retardation not observed in ancient (e.g. Meishan) domestic breeds. Pigs have been increasingly used to study chronic ischaemia, therapeutic angiogenesis, hypertrophic cardiomyopathy and abdominal aortic aneurysm as their coronary anatomy and physiology are similar to humans. Type 1 and II diabetes can be induced in swine using dietary regimes and/or administration of streptozotocin. Pigs are a good and extensively used model for specific nutritional studies as their protein and lipid metabolism is comparable with humans, although pigs are not as sensitive to protein restriction as rodents. Neonatal and weanling pigs have been used to examine the pathophysiology and prevention/treatment of microbial-associated diseases and immune system disorders. A porcine model mimicking various degrees of prematurity in infants receiving total parenteral nutrition has been established to investigate gut development, amino acid metabolism and non-alcoholic fatty liver disease. Endoscopic therapeutic methods for upper gastrointestinal tract bleeding are being developed. Bone remodelling cycle in pigs is histologically more similar to humans than that of rats or mice, and is used to examine the relationship between menopause and osteoporosis. Work has also been conducted on dental implants in pigs to consider loading; however with caution as porcine bone remodels slightly faster than human bone. We conclude that pigs are a valuable translational model to bridge the gap between classical rodent models and humans in developing new therapies to aid human health.
Resumo:
This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases.
Resumo:
Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.
Resumo:
Bone remodeling is regulated by the two branches of the autonomic nervous system: the adrenergic and the cholinergic branches. Adrenergic activity favors bone loss, whereas cholinergic activity has been recently shown to favor bone mass accrual. In vitro studies have reported that cholinergic activity induces proliferation and differentiation of bone cells. In vivo studies have shown that the inhibition of cholinergic activity favors bone loss, whereas its stimulation favors bone mass accrual. Clinical studies have shown that bone density is associated with the function of many cholinergic-regulated tissues such as the hypothalamus, salivary glands, lacrimal glands and langerhans cells, suggesting a common mechanism of control. Altogether, these observations and linked findings are of great significance since they improve our understanding of bone physiology. These discoveries have been successfully used recently to investigate new promising therapies for bone diseases based on cholinergic stimulation. Here, we review the current understanding of the cholinergic activity and its association with bone health.