73 resultados para mesophases
Resumo:
The mesoscale simulation of a lamellar mesophase based on a free energy functional is examined with the objective of determining the relationship between the parameters in the model and molecular parameters. Attention is restricted to a symmetric lamellar phase with equal volumes of hydrophilic and hydrophobic components. Apart from the lamellar spacing, there are two parameters in the free energy functional. One of the parameters, r, determines the sharpness of the interface, and it is shown how this parameter can be obtained from the interface profile in a molecular simulation. The other parameter, A, provides an energy scale. Analytical expressions are derived to relate these parameters to r and A to the bending and compression moduli and the permeation constant in the macroscopic equation to the Onsager coefficient in the concentration diffusion equation. The linear hydrodynamic response predicted by the theory is verified by carrying out a mesoscale simulation using the lattice-Boltzmann technique and verifying that the analytical predictions are in agreement with simulation results. A macroscale model based on the layer thickness field and the layer normal field is proposed, and the relationship between the parameters in the macroscale model from the parameters in the mesoscale free energy functional is obtained.
Resumo:
Computer simulations of (i) a [C(12)mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, as well as relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C(12)mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C(4)mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.
Resumo:
This paper describes time-resolved x-ray diffraction data monitoring the transformation of one inverse bicontinuous cubic mesophase into another, in a hydrated lipid system. The first section of the paper describes a mechanism for the transformation that conserves the topology of the bilayer, based on the work of Charvolin and Sadoc, Fogden and Hyde, and Benedicto and O'Brien in this area. We show a pictorial representation of this mechanism, in terms of both the water channels and the lipid bilayer. The second section describes the experimental results obtained. The system under investigation was 2:1 lauric acid: dilauroylphosphatidylcholine at a hydration of 50% water by weight. A pressure-jump was used to induce a phase transition from the gyroid (Q(II)(G)) to the diamond (Q(II)(D)) bicontinuous cubic mesophase, which was monitored by time-resolved x-ray diffraction. The lattice parameter of both mesophases was found to decrease slightly throughout the transformation, but at the stage where the Q(II)(D) phase first appeared, the ratio of lattice parameters of the two phases was found to be approximately constant for all pressure-jump experiments. The value is consistent with a topology-preserving mechanism. However, the polydomain nature of our sample prevents us from confirming that the specific pathway is that described in the first section of the paper. Our data also reveal signals from two different intermediate structures, one of which we have identified as the inverse hexagonal (H-II) mesophase. We suggest that it plays a role in the transfer of water during the transformation. The rate of the phase transition was found to increase with both temperature and pressure-jump amplitude, and its time scale varied from the order of seconds to minutes, depending on the conditions employed.
Resumo:
This article presented physicochemical characterization and rheological behavior evaluation of the liquid crystalline mesophases developed with different silicones. There were prepared 5 ternary systems, which were carried out the determination of the relative density, the electric conductivity and polarized light microscopy analysis, being selected two systems to promote the Preliminary Stability Tests. The results showed that System 1 obtained the major liquid crystal formation and a higher stability. The temperature influences in the systems stability and phases structure. In hot oven, observed oneself the mixture of lamellar and hexagonal phase, for both systems.
Resumo:
By equilibrating condensed DNA arrays against reservoirs of known osmotic stress and examining them with several structural probes, it has been possible to achieve a detailed thermodynamic and structural characterization of the change between two distinct regions on the liquid-crystalline phase diagram: (i) a higher density hexagonally packed region with long-range bond orientational order in the plane perpendicular to the average molecular direction and (ii) a lower density cholesteric region with fluid-like positional order. X-ray scattering on highly ordered DNA arrays at high density and with the helical axis oriented parallel to the incoming beam showed a sixfold azimuthal modulation of the first-order diffraction peak that reflects the macroscopic bond-orientational order. Transition to the less-dense cholesteric phase through osmotically controlled swelling shows the loss of this bond orientational order, which had been expected from the change in optical birefringence patterns and which is consistent with a rapid onset of molecular positional disorder. This change in order was previously inferred from intermolecular force measurements and is now confirmed by 31P NMR. Controlled reversible swelling and compaction under osmotic stress, spanning a range of densities between approximately 120 mg/ml to approximately 600 mg/ml, allow measurement of the free-energy changes throughout each phase and at the phase transition, essential information for theories of liquid-crystalline states.
Resumo:
The potential use of the solvothermal extraction (SE) as a preliminary step to calcination for detemplating SBA-15 mesophases is investigated; aiming to reduce the amount of organics to be burnt and thereby the corresponding structural shrinkage. A systematic study was carried out by soxhlet extraction on mesophases hydrothermally aged between 90 and 130 C. The mesophases containing variable amounts of template were then treated by calcination or pyrolysis/calcination. TGA was applied to quantify the template amount after the various treatments. The as obtained materials were characterized by SAXS and Ar ad/desorption for structural and textural information while 1H NMR gave information about the integrity of the as-recycled template. The study shows that solvothermal conditions remove considerably the template, typically from 50 to 10-20 wt.%, mainly extracted from the primary mesopores. Possible reuse of the extracted template is questionable as it is poor in polyethyleneoxide compared to the synthesis block-copolymer, Pluronic P123. For all thermal protocols applied (direct calcination, calcination after solvent-extraction or pyrolysis/calcination after solvent extraction), the thermal shrinkage decreases with the aging temperature; that is consistent with the condensation degree of the silica. For each mesophase, it was found that the thermal shrinkage becomes less pronounced when the material is fully templated; thus the template can serve as structural support or can control the mass transfer of O2 and thereby the oxidation rate of the template burning. © 2013 Elsevier Inc. All rights reserved.
Resumo:
An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum tri-sec-butoxide (ATSB), synthesis reproducibility, role of nonvolatile acids, and the crystallization and thermal stability of the crystalline counterparts. Mesophase specific surface area and pore uniformity depend notably on the solvent; s-BuOH yields the highest surface area and pore uniformity. The optimal mesophase synthesis is reproducible with standard deviations in the textural parameters below 5%. The most pore-uniform mesophases from the three solvents were thermally activated at 1023 K to crystallize them into γ-alumina. The s-BuOH mesophase is remarkably thermally stable, retaining the mesoscopic wormhole order with 300 m2/g (0.45 cm3/g) and an increased acidic site density. These features are not obtained with EtOH or t-BuOH, where agglomerated γ-Al2O3 crystallites are formed with lower surface areas and broader pore size distributions. This was rationalized by the increase of the hydrolysis rate using EtOH and t-BuOH. t-BuOH dehydrates under the synthesis conditions or reacts with HCl, situations that increase the water concentration and rate of hydrolysis. It was found that EtOH exchanges rapidly, producing a highly reactive Al-ethoxide, thus enhancing the hydrolysis rate as well. Particle heterogeneity with random packing of fibrous and wormhole morphologies, attributed to the high hydrolysis rate, was observed for mesophases derived from both solvents. Such a low particle coordination favors coarsening with enlargement of the pore size distribution upon thermal treatment, explaining the lower thermal stability. Controlled hydrolysis and formation of low-polymerized Al species in s-BuOH are possibly responsible for the adequate assembly onto the surfactant. This was verified by the formation of a regular distribution of relatively size-uniform nanoparticles in the mesophase; high particle coordination prevents coarsening, favors densification, and maintains a relatively uniform pore size distribution upon thermal treatment. The acid removal in the evaporation is another key factor to promote network condensation in this route. © 2013 American Chemical Society.
Resumo:
This paper reports a new class of photo-cross-linkable side chain liquid crystalline polymers (PSCLCPs) based on the bis(benzylidene)cyclohexanone unit, which functions as both a mesogen and a photoactive center. Polymers with the bis(benzylidene)cyclohexanone unit and varying spacer length have been synthesized. Copolymers of bis(benzylidene)cyclohexanone containing monomer and cholesterol benzoate containing monomer with different compositions have also been prepared. All these polymers have been structurally characterized by spectroscopic techniques. Thermal transitions were studied by DSC, and mesophases were identified by polarized light optical microscopy (POM). The intermediate compounds OH-x, the monomers SCLCM-x, and the corresponding polymers PSCLCP-x, which are essentially based on bis(benzylidene)cyclohexanone, all show a nematic mesophase. Transition temperatures were observed to decrease with increasing spacer length. The copolymers with varying compositions exhibit a cholesteric mesophase, and the transition temperatures increase with the cholesteric benzoate units in the copolymer. Photolysis of the low molecular weight liquid crystalline bis(benzylidene)-cyclohexanone compound reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerization and 2 pi + 2 pi addition. The EZ photoisomerization in the LC phase disrupts the parallel stacking of the mesogens, resulting in the transition from the LC phase to the isotropic phase. The photoreaction involving the 2 pi + 2 pi addition of the bis(benzylidene)cyclohexanone units in the polymer results in the cross-linking of the chains. The liquid crystalline induced circular dichroism (LCICD) studies of the cholesterol benzoate copolymers revealed that the cholesteric supramolecular order remains even after the photo-cross-linking.
Resumo:
Two series of thermotropic main chain discotic liquid crystalline polyethers, PR4m-n, based on rufigallol were prepared starting from the symmetric tetraethers of rufigallol, R4m; m and n represent the number of carbon atoms in the side chain and spacer segment, respectively. The symmetric tetraethers were in turn readily prepared by selective alkylation of rufigallol under controlled phase-transfer conditions. GPC analysis of the polymers suggested that they were all of moderate molecular weights, with M-n varying between 5400 and 17 000. The length of the spacer segment n in these polyethers was systematically varied, and its effect on the phase transition temperatures and the mesophase structure was examined using DSC, polarized light microscopy, and X-ray diffraction. It is noticed that when the spacer lengths are relatively long(n greater than or equal to 2m), the isotropization temperature (TD-i) decreases as the spacer length n increases, an observation that is in accordance with those previously made. However, when the spacer lengths are relatively small (n < 2m), the dependence of TD-i is quite the opposite; TD-i actually increases with an increase in spacer length. Furthermore, X-ray diffraction studies indicate that, in the discotic columnar mesophases that are formed, the columns pack in a hexagonal manner when n greater than or equal to 2m, while they do so in a rectangular lattice when n < 2m, leading to the formation of Dh and Dr mesophases, respectively. Finally, comparison of the discotic polyethers with their low molar mass analogues confirms the role of polymerization in stabilizing the mesophase; while all the polymers exhibit columnar mesophases, some of their low molar mass analogues are not liquid crystalline.
Resumo:
Thermotropic liquid crystals are known to display rich phase behavior on temperature variation. Although the nematic phase is orientationally ordered but translationally disordered, a smectic phase is characterized by the appearance of a partial translational order in addition to a further increase in orientational order. In an attempt to understand the interplay between orientational and translational order in the mesophases that thermotropic liquid crystals typically exhibit upon cooling from the high-temperature isotropic phase, we investigate the potential energy landscapes of a family of model liquid crystalline systems. The configurations of the system corresponding to the local potential energy minima, known as the inherent structures, are determined from computer simulations across the mesophases. We find that the depth of the potential energy minima explored by the system along an isochor grows through the nematic phase as temperature drops in contrast to its insensitivity to temperature in the isotropic and smectic phases. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures; the inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the isotropic-nematic transition. We find that this breakdown occurs at a temperature below which the system explores increasingly deeper potential energy minima.
Resumo:
Pristine and long-chain functionalized single-walled carbon nanotubes (SWNTs) were incorporated successfully in supramolecular organogels formed by an all-trans tri(p-phenylenevinylene) bis-aldoxime to give rise to new nanocomposites with interesting mechanical, thermal and electrical properties. Variable-temperature UV-vis and fluorescence spectra reveal both pristine and functionalized SWNTs promote aggregation of the gelator molecules and result in quenching of the UV-vis and fluorescence intensity. Electron microscopy and confocal microscopy show the existence of a densely packed and directionally aligned fibrous network in the resulting nanocomposites. Differential scanning calorimetry (DSC) of the composites shows that incorporation of SWNTs increases the gel formation temperature. The DSC of the xerogels of 1-SWNT composites indicates formation of different thermotropic mesophases which is also evident from polarized optical microscopy. The reinforced aggregation of the gelators on SWNT doping was reflected in the mechanical properties of the composites. Rheology of the composites demonstrates the formation of a rigid and viscoelastic solid-like assembly on SWNT incorporation. The composites from gel-SWNTs were found to be semiconducting in nature and showed enhanced electrical conductivity compared to that of the native organogel. Upon irradiation with a near IR laser at 1064 nm for 5 min it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while irradiation for even 30 min of the native organogel under identical conditions did not cause any gel-to-sol conversion.
Resumo:
Hyperbranched polyesters based on 3,5-dihydroxybenzoic acid and its derivatives were prepared by self-condensation of the corresponding ester under standard trans-esterification conditions. The spacer segment length that connects the branching points was systematically varied by starting from the appropriate ethyl 3,5-bis(omega-hydroxyoligo(ethyleneoxy))benzoate. The thermal properties of the hyperbranched polyesters were studied using DSC, and they have been compared with those of the linear analogues prepared from the corresponding p-hydroxybenzoic acid derivatives and also with the molecularly ''kinked'' analogues prepared from the meta isomers. These hyperbranched polyesters were also terminally functionalized by using a potentially mesogenic 4-butoxybiphenylcarboxylic acid derivative in an attempt to prepare novel hyperbranched liquid crystalline polyesters. This was achieved by copolymerization of the AB(2) monomer with the mesogenic A-type capping unit. These polymers were found to be amorphous and did not exhibit any liquid crystalline phases, probably due to the random distribution of the mesogenic segments on the polymer framework, making it difficult to both crystallize and form mesophases.
Resumo:
Hexagonal, cubic and lamellar aluminoborate mesophases containing octahedral aluminium and tetrahedral boson are prepared and characterized for the first time.
Resumo:
NMR spectra of liquid crystalline phases and the molecules dissolved therein, spinning at and near the magic angle provide information on the director dynamics and the order parameter. The studies on the dynamics of the liquid crystal director for sample spinning near magic angle in mesophases with positive and negative diamagnetic susceptibility anisotropies (Delta chi) and their mixtures with near-zero macroscopic diamagnetic susceptibility anisotropies have been reported. In systems with weakly positive Delta chi, the director has been observed to switch from an orientation parallel to the spinning axis at low rotational speeds to one perpendicular to the spinning axis at high rotational speeds, when the angle theta, the axis of rotation makes with the magnetic field is smaller than the magic angle theta(m). For systems with a small negative Delta chi, similar director behaviour has been observed for theta greater than theta(m). At magic angle, the spectra under slow spinning speeds exhibit a centre band and side bands at integral values of the spinning speeds. The intensities of the spinning side bands have been shown to contain information on the sign and the magnitude of the order parameter(s). The results are discussed with illustrative examples. Results on the orientation of the chemical shielding tensor obtained from a combination of the NMR studies in the solid and the liquid crystalline states, have been described.