922 resultados para membrana para permeaçao de gases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A busca por membranas com propriedades adequadas a separação de gases em escala industrial tem levado a modificação e sIntese de polImeros de engenharia, com objetivo de obter membranas com propriedades adequadas. Uma das modificaçoes que tem se apresentado promissora é a inserção de grupos sulfônicos em polImeros comerciais. Espera-se que o polImero sulfonado apresente um aumento na permeação de gases polares, em relação a gases apolares, devido a sua estrutura mais polar e flexIvel. Neste contexto, o objetivo do presente trabalho é a sIntese e caracterização de membranas de poli(éter imida) sulfonada para a permeação de gases. Um planejamento experimental foi desenvolvido, em diferentes condiçoes reacionais de temperatura, tempo e excesso de um dos reagentes (ácido acético), para a sIntese de poli(éter imida) sulfonada (SPEI). Através deste planejamento, constatou-se que as variáveis que mais influenciam o grau de sulfonação são a temperatura e o tempo. O polImero com o maior grau de sulfonação, determinado por capacidade de troca iônica (IEC= 92 mEq H+/g), foi utilizado para o preparo da membrana de SPEI, obtida pela técnica de inversão de fase por evaporação do solvente, utilizando-se clorofórmio como solvente. Este filme foi caracterizado a partir das seguintes análises: espectroscopia de infravermelho (FTIR), calorimetria diferencial de varredura (DSC), análise termogravimétrica (TGA) e microscopia eletrônica de varredura (MEV), a fim de avaliar a influência da inserção do grupo sulfônico na matriz polimérica. O espectro de infravermelho de SPEI apresentou bandas relacionadas as vibraçoes assimétricas em 1240 cm-1 (ligação O=S=O), ligação simétrica em 1171 cm-1 (O=S=O) e ligação S-O entre 1010-1024 cm-1. Isto indica a presença de grupos sulfônicos. A análise de DSC foi realizada entre 150-250C. Nesta faixa, não foram observadas alteraçoes na temperatura de transição vItrea (Tg) do polImero modificado (217C). Acredita-se que a decomposição do grupo sulfona aconteça antes da temperatura atingir o Tg do polImero. Esta suposição é confirmada na análise de TGA. As imagens de MEV mostraram que foram obtidos filmes livres de poros e defeitos. A membrana da SPEI foi utilizada no ensaio de permeaçao dos gases 02, N2 e C02, a fim de determinar a permeabilidade e seletividade da membrana. As permeabilidades encontradas para o gas oxigênio foram de 0,76 barrer para a PEI e 0,46 barrer para a SPEI. A seletividade do dióxido de carbono em relaçao ao oxigênio aumentou de 3,5, na membrana de PEI, para 4,83, na membrana de SPEI. Em relaçao ao nitrogênio, as permeabilidades medidas foram 0,064 barrer e 0,043 barrer, para a PEI e para a SPEI, respectivamente, enquanto a seletividade em relaçao ao C02 aumentou de 41,1 para 55,5. Estes resultados indicam que o efeito de sorçao predominou devido ao aumento das interaçöes moleculares, reduzindo assim o volume livre, o que tornou a membrana sulfonada mais compacta, com permeabilidade menor e maior seletividade. Estes resultados corroboram com a premissa de que a sulfonaçao é um processo promissor para o desenvolvimento de membranas mais eficientes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Entre os polímeros considerados promissores para a remoção seletiva de CO2, destacam-se aqueles que contêm os grupos glicol etilênico (EG). Nesta dissertação, foram obtidos filmes a partir de dispersões aquosas de poliuretano (PU), sintetizadas em trabalho anterior, à base de poli(glicol propilênico) (PPG), copolímero em bloco à base de poli(glicol etilênico) (PEG) e PPG (EG-b-PG), ácido dimetilolpropiônico (DMPA), diisocianato de isoforona (IPDI) e etilenodiamina (EDA). PPG, EG-b-PG e DMPA formaram as regiões flexíveis nas proporções de: PPG 100% e 0% EG-b-PG, PPG 75% e 25% EG-b-PG, PPG 50% e 50% EG-b-PG e PPG 25% e 75% EG-b-PG em termos de equivalentes-gramas. A influência da quantidade dos segmentos de PEG foi avaliada por ensaios de permeação com os gases CO2, CH4 e N2. Os filmes obtidos das dispersões foram caracterizados por espectrometria de infravermelho com transformadas de Fourier (FTIR), análise termogravimétrica (TGA), difração de raios x (DRX) e espalhamento de raios X a baixo ângulo (SAXS). Espectros de FTIR mostraram que os segmentos de EG influenciaram a frequência da banda de carbonila. Curvas de perda de massa (TG) mostraram perfis semelhantes de degradação, enquanto que as curvas derivadas apresentaram diferenças. DRX e SAXS mostraram que os segmentos de PEG promoveram uma maior ordenação na estrutura da membrana. Testes de permeação de gases mostraram que o aumento do teor de PEG aumentou o valor da permeabilidade para o CO2, indicando que os segmentos de PEG interagiram favoravelmente com este gás. Em relação ao CH4 e N2, houve uma diminuição na permeabilidade quando comparados com os valores encontrados para o CO2, sendo atribuído a perda de mobilidade segmental. Em termos de seletividade, para o par CO2/CH4 foi obtido um valor médio de 61,7 para a membrana contendo o maior teor de PEG, e o par CO2/N2 um valor médio de 121,5, sendo superior aos valores encontrados na literatura, tornando o material promissor

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TIPO DE BUQUE: LNG con tanques tipo membrana. TRIPULACIÓN: 30 personas PESO MUERTO: 32000 Toneladas VELOCIDAD EN PRUEBAS: 17,5 nudos al 90% de la M.C.R, 21 % de margen de mar. PROPULSIÓN: Turbina marina a vapor. Hélice de palas fijas CAPACIDAD DE ALMACENAMIENTO: 4 bodegas con tanques de tipo membrana de capacidad total de 51000 m3 (100 % y –163ºC). Combustible 3000 m3. D.O 250 m3. Agua dulce 200 m3. Agua destilada 200 m3. Aceite 200 m3. EQUIPO DE MANIPULACIÓN DE CARGA: 8 bombas de descarga de 700 m3/h a 150 mcl, 4 bombas de achique de 25 m3/h a 150 mcl CLASIFICACIÓN Y COTA: Bureau Veritas.+I3/3, Liquified Gas Carrier, deep sea, AUT, AUTPORT. REGLAMENTOS Y LIMITACIONES: B.V, SOLAS código gas. OTROS REQUERIMIENTOS: Gas inerte. Generador de nitrógeno. Detección de gases en espacios vacíos y lastres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Welding system has now been concentrated on the development of new process to achieve cost savings, higher productivity and better quality in manufacturing industry. Discrete alternate supply of shielding gas is a new technology that alternately supplies the different kinds of shielding gases in weld zone. As the newdevelopedmethods compared to the previous generalwelding with a mixing supply of shielding gas, it cannot only increase thewelding quality, but also reduce the energy by 20% and the emission rate of fume. As a result, under thesamewelding conditions,comparedwith thewelding by supplying pure argon, argon + 67% helium mixture by conventional method and thewelding by supplying alternately pure argon and pure helium by alternate method showed the increased welding speed. Also, the alternate method showed the same welding speed with argon + 67% helium mixture without largely deteriorating of weld penetration. The alternate method with argon and helium compared with the conventional methods of pure argon and argon + 67% helium mixture produced the lowest degree of welding distortion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, unlike conventional method in supplying shielding gas, a newly method which alternately supplies different kinds of shielding gases in weld zone is developed and partly commercialized. However, literature related to the present status of the technology in the actual weld field is very scant. To give better understand on this technology, this study was performed. Compared with conventional gas supply method, the variations of weld porosity and weld shape in aluminum welding with alternate supply method of pure argon and pure helium were compared with conventional gas supply method with pure argon and argon + 67%helium mixture, respectively. As a result, compared with the welding by supplying pure argon and argon + 67%helium mixture by conventional method, the welding by supplying alternately pure argon and pure helium, produced lower degree of weld porosity and deeper and broader weld penetration profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed the effect of biochar incorporation into the soil on the soil-atmosphere exchange of the greenhouse gases (GHG) from an intensive subtropical pasture. For this, we measured N2O, CH4 and CO2 emissions with high temporal resolution from April to June 2009 in an existing factorial experiment where cattle feedlot biochar had been applied at 10 t ha-1 in November 2006. Over the whole measurement period, significant emissions of N2O and CO2 were observed, whereas a net uptake of CH4 was measured. N2O emissions were found to be highly episodic with one major emission pulse (up to 502 µg N2O-N m-2 h 1) following heavy rainfall. There was no significant difference in the net flux of GHGs from the biochar amended vs. the control plots. Our results demonstrate that intensively managed subtropical pastures on ferrosols in northern New South Wales of Australia can be a significant source of GHG. Our hypothesis that the application of biochar would lead to a reduction in emissions of GHG from soils was not supported in this field assessment. Additional studies with longer observation periods are needed to clarify the long term effect of biochar amendment on soil microbial processes and the emission of GHGs under field conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world is facing problems due to the effects of increased atmospheric pollution, climate change and global warming. Innovative technologies to identify, quantify and assess fluxes exchange of the pollutant gases between the Earth’s surface and atmosphere are required. This paper proposes the development of a gas sensor system for a small UAV to monitor pollutant gases, collect data and geo-locate where the sample was taken. The prototype has two principal systems: a light portable gas sensor and an optional electric–solar powered UAV. The prototype will be suitable to: operate in the lower troposphere (100-500m); collect samples; stamp time and geo-locate each sample. One of the limitations of a small UAV is the limited power available therefore a small and low power consumption payload is designed and built for this research. The specific gases targeted in this research are NO2, mostly produce by traffic, and NH3 from farming, with concentrations above 0.05 ppm and 35 ppm respectively which are harmful to human health. The developed prototype will be a useful tool for scientists to analyse the behaviour and tendencies of pollutant gases producing more realistic models of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.