956 resultados para melt season


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is designed to compare the monthly continental snow cover and sea ice extent loss in the Arctic with regional atmospheric conditions including: mean sea level pressure, 925 hPa air temperature, and mean wind direction among others during the melt season (March-August) over the 29-year study period 1979-2007. Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, since these data are largely stored in incompatible formats. However, the analysis of these data, averaged spatially over three autonomous study regions located in Siberia, North America, and Western Russia, reveals a distinct difference in the response of snow and sea ice to the atmospheric forcing. On average, sea ice extent is lost earlier in the year, in May, than snow cover, in June, although Arctic sea ice is located farther north than continental snow in all three study regions. Once the loss of snow and ice extent begins, snow cover is completely removed sooner than sea ice extent, even though ice loss begins earlier in the melt season. Further, the analysis of the atmospheric conditions surrounding loss of snow and ice cover over the independent study regions indicates that conditions of cool temperatures with strong northeasterly winds in the later melt season months are effective at removing sea ice cover, likely through ice divergence, as are warmer temperatures via southerly winds directly forcing melt. The results of this study set the framework for further analysis of the direct influence of snow cover loss on later melt season sea ice extents and the predictability of snow and sea ice extent responses to modeled future climate conditions

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2005 and 2007. These minima have not been predicted in the IPCC AR4 report, suggesting that the sea ice component of climate models should more realistically represent the processes controlling the sea ice mass balance. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds accumulate on the surface of sea ice from snow and sea ice melt and their presence reduces the albedo of the ice cover, leading to further melt. Toward the end of the melt season, melt ponds cover up to 50% of the sea ice surface. We have developed a melt pond evolution theory. Here, we have incorporated this melt pond theory into the Los Alamos CICE sea ice model, which has required us to include the refreezing of melt ponds. We present results showing that the presence, or otherwise, of a representation of melt ponds has a significant effect on the predicted sea ice thickness and extent. We also present a sensitivity study to uncertainty in the sea ice permeability, number of thickness categories in the model representation, meltwater redistribution scheme, and pond albedo. We conclude with a recommendation that our melt pond scheme is included in sea ice models, and the number of thickness categories should be increased and concentrated at lower thicknesses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We estimate monthly runoff for a 2-dimensional solution domain containing those areas tributary to Pyramid Lake, Nevada (the Truckee River drainage basin) at a 1-kilometer grid cell spacing. ... To calculate the effect of snow on the hydrologic system, we perform two experiments. In the first we assume that all precipitation falls as rain; in the second we assume that some precipitation falls as snow, thus available water is a combination of rain and snowmelt. We find that considering the effect of snow results in a more accurate representation of mean monthly flow rates, in particular the peak flow during the melt season in the Sierra Nevada. These preliminary results indicate that a relatively simple snow model can improve the representation of Truckee River basin hydrology, significantly reducing errors in modeled seasonal runoff.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The global mean temperature in 2008 was slightly cooler than that in 2007; however, it still ranks within the 10 warmest years on record. Annual mean temperatures were generally well above average in South America, northern and southern Africa, Iceland, Europe, Russia, South Asia, and Australia. In contrast, an exceptional cold outbreak occurred during January across Eurasia and over southern European Russia and southern western Siberia. There has been a general increase in land-surface temperatures and in permafrost temperatures during the last several decades throughout the Arctic region, including increases of 1° to 2°C in the last 30 to 35 years in Russia. Record setting warm summer (JJA) air temperatures were observed throughout Greenland. The year 2008 was also characterized by heavy precipitation in a number of regions of northern South America, Africa, and South Asia. In contrast, a prolonged and intense drought occurred during most of 2008 in northern Argentina, Paraguay, Uruguay, and southern Brazil, causing severe impacts to agriculture and affecting many communities. The year began with a strong La Niña episode that ended in June. Eastward surface current anomalies in the tropical Pacific Ocean in early 2008 played a major role in adjusting the basin from strong La Niña conditions to ENSO-neutral conditions by July–August, followed by a return to La Niña conditions late in December. The La Niña conditions resulted in far-reaching anomalies such as a cooling in the central tropical Pacific, Arctic Ocean, and the regions extending from the Gulf of Alaska to the west coast of North America; changes in the sea surface salinity and heat content anomalies in the tropics; and total column water vapor, cloud cover, tropospheric temperature, and precipitation patterns typical of a La Niña. Anomalously salty ocean surface salinity values in climatologically drier locations and anomalously fresh values in rainier locations observed in recent years generally persisted in 2008, suggesting an increase in the hydrological cycle. The 2008 Atlantic hurricane season was the 14th busiest on record and the only season ever recorded with major hurricanes each month from July through November. Conversely, activity in the northwest Pacific was considerably below normal during 2008. While activity in the north Indian Ocean was only slightly above average, the season was punctuated by Cyclone Nargis, which killed over 145,000 people; in addition, it was the seventh-strongest cyclone ever in the basin and the most devastating to hit Asia since 1991. Greenhouse gas concentrations continued to rise, increasing by more than expected based on with CO2 the 1979 to 2007 trend. In the oceans, the global mean uptake for 2007 is estimated to be 1.67 Pg-C, about CO2 0.07 Pg-C lower than the long-term average, making it the third-largest anomaly determined with this method since 1983, with the largest uptake of carbon over the past decade coming from the eastern Indian Ocean. Global phytoplankton chlorophyll concentrations were slightly elevated in 2008 relative to 2007, but regional changes were substantial (ranging to about 50%) and followed long-term patterns of net decreases in chlorophyll with increasing sea surface temperature. Ozone-depleting gas concentrations continued to fall globally to about 4% below the peak levels of the 2000–02 period. Total column ozone concentrations remain well below pre-1980, levels and the 2008 ozone hole was unusually large (sixth worst on record) and persistent, with low ozone values extending into the late December period. In fact the polar vortex in 2008 persisted longer than for any previous year since 1979. Northern Hemisphere snow cover extent for the year was well below average due in large part to the record-low ice extent in March and despite the record-maximum coverage in January and the shortest snow cover duration on record (which started in 1966) in the North American Arctic. Limited preliminary data imply that in 2008 glaciers continued to lose mass, and full data for 2007 show it was the 17th consecutive year of loss. The northern region of Greenland and adjacent areas of Arctic Canada experienced a particularly intense melt season, even though there was an abnormally cold winter across Greenland's southern half. One of the most dramatic signals of the general warming trend was the continued significant reduction in the extent of the summer sea-ice cover and, importantly, the decrease in the amount of relatively older, thicker ice. The extent of the 2008 summer sea-ice cover was the second-lowest value of the satellite record (which started in 1979) and 36% below the 1979–2000 average. Significant losses in the mass of ice sheets and the area of ice shelves continued, with several fjords on the northern coast of Ellesmere Island being ice free for the first time in 3,000–5,500 years. In Antarctica, the positive phase of the SAM led to record-high total sea ice extent for much of early 2008 through enhanced equatorward Ekman transport. With colder continental temperatures at this time, the 2007–08 austral summer snowmelt season was dramatically weakened, making it the second shortest melt season since 1978 (when the record began). There was strong warming and increased precipitation along the Antarctic Peninsula and west Antarctica in 2008, and also pockets of warming along coastal east Antarctica, in concert with continued declines in sea-ice concentration in the Amundsen/Bellingshausen Seas. One significant event indicative of this warming was the disintegration and retreat of the Wilkins Ice Shelf in the southwest peninsula area of Antarctica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seasonal-to-interannual predictions of Arctic sea ice may be important for Arctic communities and industries alike. Previous studies have suggested that Arctic sea ice is potentially predictable but that the skill of predictions of the September extent minimum, initialized in early summer, may be low. The authors demonstrate that a melt season “predictability barrier” and two predictability reemergence mechanisms, suggested by a previous study, are robust features of five global climate models. Analysis of idealized predictions with one of these models [Hadley Centre Global Environment Model, version 1.2 (HadGEM1.2)], initialized in January, May and July, demonstrates that this predictability barrier exists in initialized forecasts as well. As a result, the skill of sea ice extent and volume forecasts are strongly start date dependent and those that are initialized in May lose skill much faster than those initialized in January or July. Thus, in an operational setting, initializing predictions of extent and volume in July has strong advantages for the prediction of the September minimum when compared to predictions initialized in May. Furthermore, a regional analysis of sea ice predictability indicates that extent is predictable for longer in the seasonal ice zones of the North Atlantic and North Pacific than in the regions dominated by perennial ice in the central Arctic and marginal seas. In a number of the Eurasian shelf seas, which are important for Arctic shipping, only the forecasts initialized in July have continuous skill during the first summer. In contrast, predictability of ice volume persists for over 2 yr in the central Arctic but less in other regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The atmospheric response to an idealized decline in Arctic sea ice is investigated in a novel fully coupled climate model experiment. In this experiment two ensembles of single-year model integrations are performed starting on 1 April, the approximate start of the ice melt season. By perturbing the initial conditions of sea ice thickness (SIT), declines in both sea ice concentration and SIT, which result in sea ice distributions that are similar to the recent sea ice minima of 2007 and 2012, are induced. In the ice loss regions there are strong (~3 K) local increases in sea surface temperature (SST); additionally, there are remote increases in SST in the central North Pacific and subpolar gyre in the North Atlantic. Over the central Arctic there are increases in surface air temperature (SAT) of ~8 K due to increases in ocean–atmosphere heat fluxes. There are increases in SAT over continental North America that are in good agreement with recent changes as seen by reanalysis data. It is estimated that up to two-thirds of the observed increase in SAT in this region could be related to Arctic sea ice loss. In early summer there is a significant but weak atmospheric circulation response that projects onto the summer North Atlantic Oscillation (NAO). In early summer and early autumn there is an equatorward shift of the eddy-driven jet over the North Atlantic as a result of a reduction in the meridional temperature gradients. In winter there is no projection onto a particular phase of the NAO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global climate change in recent decades has strongly influenced the Arctic generating pronounced warming accompanied by significant reduction of sea ice in seasonally ice-covered seas and a dramatic increase of open water regions exposed to wind [Stephenson et al., 2011]. By strongly scattering the wave energy, thick multiyear ice prevents swell from penetrating deeply into the Arctic pack ice. However, with the recent changes affecting Arctic sea ice, waves gain more energy from the extended fetch and can therefore penetrate further into the pack ice. Arctic sea ice also appears weaker during melt season, extending the transition zone between thick multi-year ice and the open ocean. This region is called the Marginal Ice Zone (MIZ). In the Arctic, the MIZ is mainly encountered in the marginal seas, such as the Nordic Seas, the Barents Sea, the Beaufort Sea and the Labrador Sea. Formed by numerous blocks of sea ice of various diameters (floes) the MIZ, under certain conditions, allows maritime transportation stimulating dreams of industrial and touristic exploitation of these regions and possibly allowing, in the next future, a maritime connection between the Atlantic and the Pacific. With the increasing human presence in the Arctic, waves pose security and safety issues. As marginal seas are targeted for oil and gas exploitation, understanding and predicting ocean waves and their effects on sea ice become crucial for structure design and for real time safety of operations. The juxtaposition of waves and sea ice represents a risk for personnel and equipment deployed on ice, and may complicate critical operations such as platform evacuations. The risk is difficult to evaluate because there are no long-term observations of waves in ice, swell events are difficult to predict from local conditions, ice breakup can occur on very short time-scales and wave-ice interactions are beyond the scope of current forecasting models [Liu and Mollo-Christensen, 1988,Marko, 2003]. In this thesis, a newly developed Waves in Ice Model (WIM) [Williams et al., 2013a,Williams et al., 2013b] and its related Ocean and Sea Ice model (OSIM) will be used to study the MIZ and the improvements of wave modeling in ice infested waters. The following work has been conducted in collaboration with the Nansen Environmental and Remote Sensing Center and within the SWARP project which aims to extend operational services supporting human activity in the Arctic by including forecast of waves in ice-covered seas, forecast of sea-ice in the presence of waves and remote sensing of both waves and sea ice conditions. The WIM will be included in the downstream forecasting services provided by Copernicus marine environment monitoring service.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The annual onset of snowmelt on sea ice is essential for climate monitoring since it triggers a decrease in surface albedo that feeds back into a stronger absorption of shortwave radiation - a process known as the snowmelt-albedo feedback - and thus strongly modifies the surface energy balance during summer. Algorithms designed for the detection of snowmelt on Arctic sea ice and based on longterm passive-microwave data revealed the melt season in the Arctic from 1979 to 1998 to be significantly elongated and the onset of melt to be shifted toward earlier dates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Arctic sea-ice environment has been undergoing dramatic changes in the past decades; to which extent this will affect the deposition, fate, and effects of chemical contaminants remains virtually unknown. Here, we report the first study on the distribution and transport of mercury (Hg) across the ocean-sea-ice-atmosphere interface in the Southern Beaufort Sea of the Arctic Ocean. Despite being sampled at different sites under various atmospheric and snow cover conditions, Hg concentrations in first-year ice cores were generally low and varied within a remarkably narrow range (0.5-4 ng/L), with the highest concentration always in the surface granular ice layer which is characterized by enriched particle and brine pocket concentration. Atmospheric Hg depletion events appeared not to be an important factor in determining Hg concentrations in sea ice except for frost flowers and in the melt season when snowpack Hg leaches into the sea ice. The multiyear ice core showed a unique cyclic feature in the Hg profile with multiple peaks potentially corresponding to each ice growing/melting season. The highest Hg concentrations (up to 70 ng/L) were found in sea-ice brine and decrease as the melt season progresses. As brine is the primary habitat for microbial communities responsible for sustaining the food web in the Arctic Ocean, the high and seasonally changing Hg concentrations in brine and its potential transformation may have a major impact on Hg uptake in Arctic marine ecosystems under a changing climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present subdaily ice flow measurements at four GPS sites between 36 and 72 km from the margin of a marine-terminating Greenland outlet glacier spanning the 2009 melt season. Our data show that >35 km from the margin, seasonal and shorter-time scale ice flow variations are controlled by surface melt-induced changes in subglacial hydrology. Following the onset of melting at each site, ice motion increased above background for up to 2 months with resultant up-glacier migration of both the onset and peak of acceleration. Later in our survey, ice flow at all sites decreased to below background. Multiple 1 to 15 day speedups increased ice motion by up to 40% above background. These events were typically accompanied by uplift and coincided with enhanced surface melt or lake drainage. Our results indicate that the subglacial drainage system evolved through the season with efficient drainage extending to at least 48 km inland during the melt season. While we can explain our observations with reference to evolution of the glacier drainage system, the net effect of the summer speed variations on annual motion is small (~1%). This, in part, is because the speedups are compensated for by slowdowns beneath background associated with the establishment of an efficient subglacial drainage system. In addition, the speedups are less pronounced in comparison to land-terminating systems. Our results reveal similarities between the inland ice flow response of Greenland marine- and land-terminating outlet glaciers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study presented in this PhD memory aim at better define and quantify the present timeerosion processes in glacial and proglacial domain. The Glacier des Bossons, situated in theMont-Blanc massif (Haute-Savoie, France), is a good example of a natural and nonanthropizedsystem which allows us to study this topic. This glacier lies on two mainlithologies (the Mont-Blanc granite and the metamorphic bedrock) and this peculiarity is usedto determine the origin of the glacial sediments. The sediments were sampled at the glaciersurface and at the glacier sole and also in the subglacial streams in order to understand themechanisms of mechanical erosion and particle transportation in glacial domain. The study ofthe granulometric distribution and the origin of the sediments were performed by a lithologicanalysis at macro-scale (naked-eye) and a geochemical analysis at micro-scale (U-Pb datingof zircons). These analyses allowed specifying the characteristics of glacial erosion andtransport. (1) the supraglacial sediments derived from the erosion of the rocky valley sides aremainly coarse and the glacial transport does not mix these clasts with those derived from thesub-glacial erosion, except in the lower tongue; (2) the sub-glacial erosion rates areinhomogeneous, erosion under the temperate glacier (0.4-0.8 mm/yr) is at least sixteen timesmore efficient than the erosion under the cold glacier (0.025-0.05 mm/yr); (3) the sub-glacialsediments contain a silty and sandy fraction, resulting from processes of abrasion andcrushing, which is evacuated by sub-glacial streams. The high-resolution temporal acquisitionof hydro-sedimentary data during the 2010 melt season, between the May 5th and theSeptember 17th, allowed defining the seasonal behavior of the hydrologic and sedimentaryfluxes. The sediment exportation occurs mainly during the melt season therefore, quantify thesediment fluxes in the Bossons stream and measure regularly the topographic evolution of thefluvio-glacial system allows to perform a sedimentary balance of the erosion of glacial andnon-glacial domains. During the year 2010, about 3000 tons of sediments were eroded with430 tons settled on the fluvio-glacial system. By analyzing the evolution of suspendedparticulate matter concentrations in the Bossons stream upstream and downstream the fluvioglacialsystem, the part of glacial erosion and non-glacial denudation in the sedimentarybalance could be proportioned. The erosion during the stormy events of the uncoveredmoraines, confining the fluvio-glacial system of the Bossons stream, furnishes at least 59% ofthe sediments exported by the Bossons stream and glacial erosion (41% of the flux) istherefore less efficient comparatively. The long-term evolution of the glacial systems inperiod of global warming would show a sustained erosion of proglacial environments(mountain sides and moraines) recently exposed and therefore an increasing of the detritalfluxes. The Glacier des Bossons protects the summit of the Mont-Blanc, the differentialerosion between zones under the ice and non-glacial could lead to an increase of thedifference of altitude between valleys and summits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pressurised slurries of fine-grained sediment expelled from the base of the active layer have been observed in recent years in the High Arctic. Such mud ejections, however, are poorly understood in terms of how exactly climate and landscape factors determine when and where they occur. Mud ejections at the Cape Bounty Arctic Watershed Observatory, Melville Island, Nunavut, were systematically mapped in 2012 and 2013, and this was combined with observations of mud ejection activity and climatic measurements carried out since 2003. The mud ejections occur late in the melt season during warm years and closely following major rainfall events. High-resolution satellite imagery demonstrates that mud ejections are associated with polar semi-desert vegetative settings, flat or low-sloping terrain and south-facing slopes. The localised occurrence of mud ejections appears to be related to differential soil moisture retention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pressurised slurries of fine-grained sediment expelled from the base of the active layer have been observed in recent years in the High Arctic. Such mud ejections, however, are poorly understood in terms of how exactly climate and landscape factors determine when and where they occur. Mud ejections at the Cape Bounty Arctic Watershed Observatory, Melville Island, Nunavut, were systematically mapped in 2012 and 2013, and this was combined with observations of mud ejection activity and climatic measurements carried out since 2003. The mud ejections occur late in the melt season during warm years and closely following major rainfall events. High-resolution satellite imagery demonstrates that mud ejections are associated with polar semi-desert vegetative settings, flat or low-sloping terrain and south-facing slopes. The localised occurrence of mud ejections appears to be related to differential soil moisture retention.