998 resultados para medium frequency
Resumo:
Despite its high incidence, patellofemoral pain etiology remains unclear. No prior study has compared surface electromyography frequency domain parameters and surface electromyography time domain variables, which have been used as a classic analysis of patellofemoral pain. Thirty one women with patellofemoral pain and twenty eight pain-free women were recruited. Each participant was asked to descend a seven step staircase and data from five successful trials were collected. During the task, the vastus medialis and vastus lateralis muscle activities were monitored by surface electromyography. The data were processed and analyzed in four variables of the frequency domain (median frequency, low, medium and high frequency bands) and three time domain variables (Automatic, Cross-correlation and Visual Onset between the vastus medialis and vastus lateralis muscles). Reliability, Receiver Operating Characteristic curves and regression models were performed. The medium frequency band was the most reliable variable and different between the groups for both muscles, also demonstrated the best values of sensitivity and sensibility, 72% and 69% for the vastus medialis and 68% and 62% for the vastus lateralis, respectively. The frequency variables predicted the pain of individuals with patellofemoral pain, 26% for the vastus medialis and 20% for the vastus lateralis, being better than the time variables, which achieved only 7%. The frequency domain parameters presented greater reliability, diagnostic accuracy and capacity to predict pain than the time domain variables during stair descent and might be a useful tool to diagnose individuals with patellofemoral pain.
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
This paper reports investigation on the estimation of the short circuit impedance of power transformers, using fractional order calculus to analytically study the influence of the diffusion phenomena in the windings. The aim is to better characterize the medium frequency range behavior of leakage inductances of power transformer models, which include terms to represent the magnetic field diffusion process in the windings. Comparisons between calculated and measured values are shown and discussed.
Resumo:
Background: Cerebral autoregulation (CA) is a protective mechanism which maintains the steadiness of the cerebral blood flow (CBF) through a broad range of systemic blood pressure (BP). Acute hypertension has been shown to reduce the cerebrovascular adaptation to BP variations. However, it is still unknown whether CA is impaired in chronic hypertension. This study evaluated whether a strict control of BP affects the CA in patients with chronic hypertension, and compared a valsartan-based regimen to a regimen not inhibiting the renin-angiotensin-aldosterone system (non-RAAS). Methods: Eighty untreated patients with isolated systolic hypertension were randomized to valsartan 320 mg or to a non-RAAS regimen during 6 months. The medication was upgraded to obtain BP <140/90 mm Hg. Continuous recordings of arterial BP and CBF velocity (transcranial Doppler) were performed during periods of 5 minutes, at rest, and at different levels of alveolar CO(2) pressure provided by respiratory maneuvers. The dominant frequency of CBF oscillations was determined for each patient. Dynamic CA was measured as the mean phase shift between BP and CBF by cross-spectral analysis in the medium frequency and in the dominant CBF frequency. Results: Mean ambulatory 24-hour BP fell from 144/87 to 127/79 mm Hg in the valsartan group and from 144/87 to 134/81 mm Hg in the non-RAAS group (p = 0.13). Both groups had a similar reduction in the central BP and in the carotido-femoral pulse wave velocity. The average phase shift between BP fluctuations and CBF response at rest was normal at randomization (1.82 ± 0.08 s), which is considered a preserved autoregulation and increased to 1.91 ± 0.12 s at the end of study (p = 0.45). The comparison of both treatments showed no significant difference (-0.01 ± 0.17 s vs. 0.16 ± 0.16 s, p = 0.45) for valsartan versus non-RAAS groups. The plasmatic level of glycosylated hemoglobin decreased in the valsartan arm compared to the non-RAAS arm (-0.23 ± 0.06 vs. -0.08 ± 0.07%, p = 0.07). Conclusions: In elderly hypertensive men with isolated chronic systolic hypertension, CA seems efficient at baseline and is not significantly affected by 6 months of BP-lowering treatment. This suggests that the preventive effects of BP medication against stroke are not mediated through a restoration of the CA.
Resumo:
Keskitaajuudella toimivia muuntajia käytetään laajalti tehoelektroniikkasovelluksissa kuten DC/DC-konverttereissa ja muissa hakkuriteholähteissä. Muuntaja on induktiivinen komponentti, jonka magneettisen tasapainon säilyttäminen hakkuriteholähteissä on laitteen virheettömän toiminnan kannalta tärkeää. Muuntajaa syöttävän virtapiirin on muodostettava symmetrinen syöttöjännite, jotta muuntajan vuo ei ajaudu positiiviseen tai negatiiviseen kyllästykseen. Tässä diplomityössä esitetään muuntajan sähkömagneettinen toimintaperiaate, kyllästymisen syyt hakkuriteholähteissä sekä kehitetään aktiivinen ohjaus vuotasapainon säilyttämiseksi. Hakkuriteholähteissä käytettävissä muuntajissa on monesti useampi kuin kaksi käämiä. Tässä työssä tutkittavassa muuntajassa on useita ensiöitä ja useita toisioita ja muuntajaa syötetään keskitaajuudella. Tämä tuo uusia ongelmia verrattuna perinteiseen yksivaiheiseen DC/DC-konvertteriin. Näihin ongelmiin esitetään ratkaisut diplomityön tutkimuksessa.
Resumo:
We propose a mechanism to explain suggested links between seismic activity and ionospheric changes detected overhead. Specifically, we explain changes in the natural extremely low-frequency (ELF) radio noise recently observed in the topside ionosphere aboard the DEMETER satellite at night, before major earthquakes. Our mechanism utilises increased electrical conductivity of surface layer air before a major earthquake, which reduces the surface-ionosphere electrical resistance. This increases the vertical fair weather current, and (to maintain continuity of electron flow) lowers the ionosphere. Magnitudes of crucial parameters are estimated and found to be consistent with observations. Natural variability in ionospheric and atmospheric electrical properties is evaluated, and may be overcome using a hybrid detection approach. Suggested experiments to investigate the mechanism involve measuring the cut-off frequency of ELF “tweeks”, the amplitude and phase of very low frequency radio waves in the Earth–ionosphere waveguide, or medium frequency radar, incoherent scatter or rocket studies of the lower ionospheric electron density.
Resumo:
We present a new method to determine mesospheric electron densities from partially reflected medium frequency radar pulses. The technique uses an optimal estimation inverse method and retrieves both an electron density profile and a gradient electron density profile. As well as accounting for the absorption of the two magnetoionic modes formed by ionospheric birefringence of each radar pulse, the forward model of the retrieval parameterises possible Fresnel scatter of each mode by fine electronic structure, phase changes of each mode due to Faraday rotation and the dependence of the amplitudes of the backscattered modes upon pulse width. Validation results indicate that known profiles can be retrieved and that χ2 tests upon retrieval parameters satisfy validity criteria. Application to measurements shows that retrieved electron density profiles are consistent with accepted ideas about seasonal variability of electron densities and their dependence upon nitric oxide production and transport.
Resumo:
Different measurements were performed in cross-linked polyethylene (XLPE) employed as insulating material in coaxial cables that were field-aged and laboratory-aged under multi-stressing conditions at room temperature. Samples were peeled from the XLPE cable insulation in three different positions: just below the external semiconductor layer (outer layer), in the middle (middle layer) and just above the internal semiconductor layer of the cable (inner layer). The imaginary part of the electric susceptibility showed three peaks that obey the Dissado-Hill model. For laboratory-aged XLPE samples peeled from the inner and from the middle positions the peak at very low frequency region increased while in samples from the outer position a quasi-DC conduction process was observed. In medium frequency range a broadening of the peak was observed for all samples. Viscoelastic properties determined through dynamic mechanical analysis suggested that the aging generates processes that promoted changes of the crystallinity and the cross-linking degrees of the polymer. Fourier transform infrared spectroscopy (FTIR) measurements revealed an increase of oxidation products (esters), evidence of polar residues of the bow-tie tree and the presence of cross-linking by-products (acetophenone). Optical and scanning electronic microscope (SEM) measurements in aged samples revealed the existence of voids and bow-tie trees that were formed during aging in the middle region of the cable.
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective To assess the diagnostic accuracy of the surface electromyography (sEMG) parameters associated with referred anterior knee pain in diagnosing patellofemoral pain syndrome (PFPS). Design Sensitivity and specificity analysis. Setting Physical rehabilitation center and laboratory of biomechanics and motor control. Participants Pain-free subjects (n=29) and participants with PFPS (n=22) selected by convenience. Interventions Not applicable. Main Outcome Measure The diagnostic accuracy was calculated for sEMG parameters’ reliability, precision, and ability to differentiate participants with and without PFPS. The selected sEMG parameter associated with anterior knee pain was considered as an index test and was compared with the reference standard for the diagnosis of PFPS. Intraclass correlation coefficient, SEM, independent t tests, sensitivity, specificity, negative and positive likelihood ratios, and negative and positive predictive values were used for the statistical analysis. Results The medium-frequency band (B2) parameter was reliable (intraclass correlation coefficient=.80–.90), precise (SEM=2.71–3.87 normalized unit), and able to differentiate participants with and without PFPS (P<.05). The association of B2 with anterior knee pain showed positive diagnostic accuracy values (specificity, .87; sensitivity, .70; negative likelihood ratio, .33; positive likelihood ratio, 5.63; negative predictive value, .72; and positive predictive value, .86). Conclusions The results provide evidence to support the use of EMG signals (B2 – frequency band of 45–96Hz) of the vastus lateralis and vastus medialis muscles with referred anterior knee pain in the diagnosis of PFPS.
Resumo:
Nowadays the medical field is struggling to decrease bacteria biofilm formation which leads to infection. Biomedical devices sterilization has not changed over a long period of time. This results in high costs for hospitals healthcare managements. The objective of this project is to investigate electric field effects and surface energy manipulation as solutions for preventing bacteria biofilm for future devices. Based on electrokinectic environments 2 different methods were tested: feasibility of electric gradient through mediums (DEP) reinforced by numerical simulations; and EWOD by the fabrication of golden interdigitated electrodes on silicon glass substrates, standard ~480 nm Teflon (PTFE) layer and polymeric gasket to contain the bacteria medium. In the first experiment quantitative analysis was carried out to achieve forces required to reject bacteria without considering dielectric environment limitations as bacteria and medium frequency dependence. In the second experiment applied voltages was characterized by droplets contact angle measurements and put to the live bacteria tests. The project resulted on promising results for DEP application due to its wide range of frequency that can be used to make a “general” bacteria rejecting; but in terms of practicality, EWOD probably have higher potential for success but more experiments are needed to verify if can prevent biofilm adhesion besides the Teflon non-adhesive properties (including limitations as Teflon breakthrough, layer sensitivity) at incubation times larger than 24 hours.
Resumo:
Using pollen percentages and charcoal influx to reconstruct the Holocene vegetation and fire history, we differentiate six possible responses of plants to fire of medium and high frequency: fire-intolerant, fire damaged, fire-sensitive, fire-indifferent, fire-enhanced and fire-adapted. The fire sensitivity of 17 pollen types, representing 20 woody species in the southern Alps, is validated by comparison with today's ecological studies of plant chronosequences. A surprising coincidence of species reaction to fire of medium frequency is character istic for completely different vegetation types, such as woodlands dominated byAbies alba (7000 years ago) andCastanea sativa (today). The temporal persistence of post-fire behaviour of plant taxa up to thousands of years suggests a generally valid species-related fire sensitivity that may be influenced only in part by changing external conditions. A non-analogous behaviour of woody taxa after fire is documented for high fire frequencies. Divergent behaviour patterns of plant taxa in response to medium and high fire frequencies (e.g., increases and decreases ofAlnus glutinosa) also indicate that post-fire plant reactions may change with increasing fire fre quency.