996 resultados para mechanical damages
Resumo:
Mechanical damages such as bruising, collision and impact during food processing stages diminish quality and quantity of productions as well as efficiency of operations. Studying mechanical characteristics of food materials will help to enhance current industrial practices. Mechanical properties of fruits and vegetables describe how these materials behave under loading in real industrial operations. Optimizing and designing more efficient equipments require accurate and precise information of tissue behaviours. FE modelling of food industrial processes is an effective method of studying interrelation of variables during mechanical operation. In this study, empirical investigation has been done on mechanical properties of pumpkin peel. The test was a part of FE modelling and simulation of mechanical peeling stage of tough skinned vegetables. The compression test has been conducted on Jap variety of pumpkin. Additionally, stress strain curve, bio-yield and toughness of pumpkin skin have been calculated. The required energy for reaching bio-yield point was 493.75, 507.71 and 451.71 N.mm for 1.25, 10 and 20 mm/min loading speed respectively. Average value of force in bio-yield point for pumpkin peel was 310 N.
Resumo:
MgO based refractory castables draw wide technological interest because they have the versatility and installation advantages of monolithic refractories with intrinsic MgO properties, such as high refractoriness and resistance to basic slag corrosion. Nevertheless, MgO easily reacts with water to produce Mg(OH)(2), which is followed by a large volumetric expansion, limiting its application in refractory castables. In order to develop solutions to minimize this effect, a better understanding of the main variables involved in this reaction is required. In this work, the influence of temperature, as well as the impact of the chemical equilibrium shifting (known as the common-ion effect), on MgO hydration was evaluated. Ionic conductivity measurements at different temperatures showed that the MgO hydration reaction is accelerated with increasing temperature. Additionally, different compounds were added to evaluate their influence on the reaction rate. Among them, CaCl(2) delayed the reaction, whereas KOH showed an opposite behavior. MgCl(2) and MgSO(4) presented similar results and two other distinct effects, reaction delay and acceleration, which depended on their concentration in the suspensions. The results were evaluated by considering the kinetics and the thermodynamics of the reaction, and the mechanical damages in the samples that was caused by the hydration reaction. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
A colheita mecanizada é ferramenta fundamental no processo produtivo das grandes culturas; se não for realizada adequadamente, poderá resultar em danos mecânicos severos às sementes, acarretando, prejuízos significativos na colheita, particularmente devido à redução da qualidade. Visando a avaliar os danos causados na colheita mecanizada de soja, o presente trabalho teve como objetivo estudar o efeito do sistema de trilha axial sobre a percentagem de bandinhas, impurezas e sementes quebradas de soja cv. M-Soy 8001, em função da velocidade de trabalho e rotação do cilindro trilhador. O delineamento experimental utilizado foi o inteiramente casualizado, em parcelas subdivididas, avaliando-se duas rotações do cilindro trilhador (400 e 500 rpm) e três velocidades de operação (3,5; 4,5 e 5,5 km h-1), com três repetições. Os resultados obtidos indicam que as combinações de velocidade de operação e rotações do cilindro de trilha avaliadas não afetam as variáveis vigor, impurezas, bandinha, emergência em areia e índice de velocidade de germinação e que o aumento da rotação de 400 para 500 rpm ocasiona o aumento de sementes quebradas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate the effect of mechanical damage and physiological events in harvesting and processing of soybean cv. Mosoy RR 8000. The samples were taken during harvest manual, mechanical harvesting and during processing (receipt, pre-cleaning, cleaning, spiral separator, classification and gravity table). The physiological and physical quality was analized through the purity, germination, vigor (first germination count, seedling dry matter, accelerated aging, electrical conductivity, tetrazolium, mechanical damages and seedling field emergence) tests. The statistical design used was a entirely randomized with nine treatments (9 sampling points) with 4 replications, being the means compared by the Tuckey test at 5% probability. In the purity and seedling field emergence were observed highly significative difference between the sampling process, also this differences were obtained the first germination count, seedling dry weight matter, accelerated aging and electrical conductivity which showed smaller results for the mechanical harvesting when compared with the manual harvesting. The germination was obtained differences at 5% for the manual harvesting in relation to the mechanical harvesting were obtained smaller results, being the main cause of reducing the soybean seed quality, when compared with the manual harvesting.
Resumo:
In the postharvest management, the fruits can be exposed to injuries that depreciated the quality and the shelf life. Thus, it was evaluated the modified atmosphere effects on guavas var. Paluma subjected to different mechanical damages. Once harvested, the fruits were selected, sanitized and submitted to the treatments T1 (control) - without injuries or packaging in bags of low density polyethylene (LDPE); T2 - without injuries + LDPE bags; T3 - damage by fall of 1 m + LDPE bags; T4 - damage by compression of 9 N + LDPE bags; T5 - damage by fall of 1 m + damage by compression of 9 N + LDPE bags and T6 - damage by fall of 1 m + damage by compression of 9 N without LDPE bags. The treatments were kept in cold storage at 10 ± 1 o C and 94 ± 2% de R.H. The analysis of CO2/ethylene production, enzymatic activity, total and soluble pectins, pulp firmness, titratable acidity (TA), soluble solids (SS), reducing sugars and ascorbic acid were performed every 10 days of refrigeration, and an additional day outside cold storage (22 ± 1o C and 75 ± 3% R.H.) for 30 days. Guavas packed in LDPE bags, not subject to mechanical damage, presented the best quality standards. The fruits suffered only one kind of damage, when packaged, presented satisfactory pattern compared to the fruits without package and not exposed to any mechanical damages. Applying the two kinds of damages, the LDPE packaging was not adequate to decrease the metabolic rate of these fruits, making them unfit for marketing.
Resumo:
A injúria mecânica é um dos mais importantes fatores na redução da qualidade de sementes de soja. Neste contexto, este trabalho objetivou avaliar a influência da pressão de impacto e o teor de água em sementes, bem como a aplicabilidade da técnica de análise de imagens, na ocorrência de danos mecânicos em sementes de soja. Sementes das cultivares Vencedora e Monsoy 8001, com teores de água de 13% e 18%, foram submetidas a danos mecânicos, com a utilização de equipamento simulador de impactos (551,6 KPa e 965,3 KPa). Posteriormente, as sementes foram secas a 32ºC, até atingirem 12% de teor de água. Imediatamente após os impactos e após cinco meses de armazenamento, as sementes foram avaliadas pelos testes de tetrazólio e raios X. A pressão de impacto e o teor de água nas sementes exerceram efeitos diretos na severidade do dano mecânico, porém, o local do impacto exerceu maior influência do que aqueles fatores. A técnica de análise de imagens foi de grande utilidade na avaliação de danos mecânicos em sementes de soja, possibilitando a análise detalhada dos efeitos de diferentes fatores.
Resumo:
The Physical Properties Laboratory (LPF) has been working on the improvement of fruit and vegetable grading lines since 1992'. The experience shows that the improvement of grading lines for decreasing mechanical damages has to be approached from two viewpoints: 1) machinery aggressiveness, and 2) fruit susceptibility. Machinery aggressiveness can be characterized as impact probability for different impact intensities assessed by means of electronic fruits (IS-100) 2,5 . On the other hand, bruise susceptibility can be determined using different laboratory tests. A recent study from LPF4 shows that damage may arise differently in pome and in stone fruits, since: a) pome fruits are mainly stress-susceptible, while stone fruits appear to be more deformation-susceptible, and b) bruise size may be a good predictor for bruise susceptibility in pome fruits while for stone fruits bruise probability is the most relevant characteristic of bruise susceptibility. Also, this study indicates the feasibility of predicting bruise probability using several mechanical and load characterization parameters. Despite the efforts to establish damage thresholds in peachess, no simulation models are currently available for predicting bruise occurrence in grading lines.
Resumo:
Petrophysical properties, such as porosity, permeability, density or anisotropy de-termine the alterability of stone surfaces from archaeological sites, and therefore, the future preservation of the material. Others, like superficial roughness or color, may point out changes due to alteration processes, natural or man-induced, for ex-ample, by conservation treatments. The application of conservation treatments may vary some of these properties forcing the stone surface to a re-adaptation to the new conditions, which could generate new processes of deterioration. In this study changes resulting from the application of consolidating and hydrophobic treatments on stone materials from the Roman Theatre (marble and granite) and the Mitreo’s House (mural painting and mosaics), both archaeological sites from Merida (Spain), are analyzed. The use of portable field devices allows us to perform analyses both on site and in la-boratory, comparing treated and untreated samples. Treatments consisted of syn-thetic resins, consolidating (such as tetraethoxysilane TEOS) and hydrophobic products. Results confirm that undesirable changes may occur, with consequences ranging from purely aesthetic variations to physical, chemical and mechanical damages. This also permits us to check limitations in the use of these techniques for the evaluation of conservation treatments.
Resumo:
Purpose: The purpose of this study was to calculate mechanical properties of tough skinned vegetables as a part of Finite Element Modelling (FEM) and simulation of tissue damage during mechanical peeling of tough skinned vegetables. Design/methodology: There are some previous studies on mechanical properties of fruits and vegetables however, behaviour of tissue under different processing operations will be different. In this study indentation test was performed on Peel, Flesh and Unpeeled samples of pumpkin as a tough skinned vegetable. Additionally, the test performed in three different loading rates for peel: 1.25, 10, 20 mm/min and 20 mm/min for flesh and unpeeled samples respectively. The spherical end indenter with 8mm diameter used for the experimental tests. Samples prepare from defect free and ripped pumpkin purchased from local shops in Brisbane, Australia. Humidity and temperature were 20-55% and 20-250C respectively. Findings: Consequently, force deformation and stress and strain of samples were calculated and shown in presented figures. Relative contribution (%) of skin to different mechanical properties is computed and compared with data available from literature. According the results, peel samples had the highest value of rupture force (291N) and as well as highest value of firmness (1411Nm-1). Research limitations/implications: The proposed study focused on one type of tough skinned vegetables and one variety of pumpkin however, more tests will give better understandings of behaviours of tissue. Additionally, the behaviours of peel, unpeeled and flesh samples in different speed of loading will provide more details of tissue damages during mechanical loading. Originality/value: Mechanical properties of pumpkin tissue calculated using the results of indentation test, specifically the behaviours of peel, flesh and unpeeled samples were explored which is a new approach in Finite Element Modelling (FEM) of food processes. Keywords: Finite Element Modelling (FEM), relative contribution, firmness, toughness and rupture force.
Resumo:
The texture of agricultural crops changes during harvesting, post harvesting and processing stages due to different loading processes. There are different source of loading that deform agricultural crop tissues and these include impact, compression, and tension. Scanning Electron Microscope (SEM) method is a common way of analysing cellular changes of materials before and after these loading operations. This paper examines the structural changes of pumpkin peel and flesh tissues under mechanical loading. Compression and indentation tests were performed on peel and flesh samples. Samples structure were then fixed and dehydrated in order to capture the cellular changes under SEM. The results were compared with the images of normal peel and flesh tissues. The findings suggest that normal flesh tissue had bigger size cells, while the cellular arrangement of peel was smaller. Structural damage was clearly observed in tissue structure after compression and indentation. However, the damages that resulted from the flat end indenter was much more severe than that from the spherical end indenter and compression test. An integrated deformed tissue layer was observed in compressed tissue, while the indentation tests shaped a deformed area under the indenter and left the rest of the tissue unharmed. There was an obvious broken layer of cells on the walls of the hole after the flat end indentations, whereas the spherical indenter created a squashed layer all around the hole. Furthermore, the influence of loading was lower on peel samples in comparison with the flesh samples. The experiments have shown that the rate of damage on tissue under constant rate of loading is highly dependent on the shape of equipment. This fact and observed structural changes after loading underline the significance of deigning post harvesting equipments to reduce the rate of damage on agricultural crop tissues.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fatigue crack initiation occurs at the surface, although sub surface nucleation has also been reported. Localized imperfections like inclusions close to surface and surface small pits can result in crack sources. Coatings are not always beneficial by fatigue point of view too. Mechanical properties of the covering material can change considerably the fatigue behavior of base metal due to residual surface stresses, to micro cracks or to hydrogen embrittlement. This paper is concerned with analysis of electrolytic etch on the fatigue resistance of a 35NCD16 high strength steel in a mechanical condition of (1760 - 1960) MPa, and analysis of electroplated hard chromium effects on the fatigue resistance in a strength condition of 989 MPa. Hardness impression was used as a reference parameter in case of electrolytic etch. In both cases, experimental data showed that fatigue strength of 35NCD16 steel was considerably reduced. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective effects against muscle fatigue and ultrastructural damages, preventing or reducing the loss in mechanical muscle function after running. Subjects were tested before and after IERT protocol for maximal isometric, concentric and eccentric isokinetic knee extensor strength (60 and 180 s-1). In a second session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180 s-1, or served as controls (n = 8). The effects of acute running-induced fatigue and training on isokinetic and isometric peak torque, and rate of force development (RFD) were investigated. Before IERT, running-induced eccentric torque loss at 180 s-1 was -8 %, and RFD loss was -11 %. Longitudinal IERT led to reduced or absent acute running-induced losses in maximal IERT torque at 180 s-1 (+2 %), being significantly reduced compared to before IERT (p < 0.05), however, RFD loss remained at -11 % (p > 0.05). In conclusion, IERT yields a reduced strength loss after high-intensity running workouts, which may suggest a protective effect against fatigue and/or morphological damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training. © 2013 Springer-Verlag Berlin Heidelberg.