855 resultados para mean field independent component analysis
Resumo:
The complexity inherent in climate data makes it necessary to introduce more than one statistical tool to the researcher to gain insight into the climate system. Empirical orthogonal function (EOF) analysis is one of the most widely used methods to analyze weather/climate modes of variability and to reduce the dimensionality of the system. Simple structure rotation of EOFs can enhance interpretability of the obtained patterns but cannot provide anything more than temporal uncorrelatedness. In this paper, an alternative rotation method based on independent component analysis (ICA) is considered. The ICA is viewed here as a method of EOF rotation. Starting from an initial EOF solution rather than rotating the loadings toward simplicity, ICA seeks a rotation matrix that maximizes the independence between the components in the time domain. If the underlying climate signals have an independent forcing, one can expect to find loadings with interpretable patterns whose time coefficients have properties that go beyond simple noncorrelation observed in EOFs. The methodology is presented and an application to monthly means sea level pressure (SLP) field is discussed. Among the rotated (to independence) EOFs, the North Atlantic Oscillation (NAO) pattern, an Arctic Oscillation–like pattern, and a Scandinavian-like pattern have been identified. There is the suggestion that the NAO is an intrinsic mode of variability independent of the Pacific.
Resumo:
Gene microarray technology is highly effective in screening for differential gene expression and has hence become a popular tool in the molecular investigation of cancer. When applied to tumours, molecular characteristics may be correlated with clinical features such as response to chemotherapy. Exploitation of the huge amount of data generated by microarrays is difficult, however, and constitutes a major challenge in the advancement of this methodology. Independent component analysis (ICA), a modern statistical method, allows us to better understand data in such complex and noisy measurement environments. The technique has the potential to significantly increase the quality of the resulting data and improve the biological validity of subsequent analysis. We performed microarray experiments on 31 postmenopausal endometrial biopsies, comprising 11 benign and 20 malignant samples. We compared ICA to the established methods of principal component analysis (PCA), Cyber-T, and SAM. We show that ICA generated patterns that clearly characterized the malignant samples studied, in contrast to PCA. Moreover, ICA improved the biological validity of the genes identified as differentially expressed in endometrial carcinoma, compared to those found by Cyber-T and SAM. In particular, several genes involved in lipid metabolism that are differentially expressed in endometrial carcinoma were only found using this method. This report highlights the potential of ICA in the analysis of microarray data.
Resumo:
This paper derives a new algorithm that performs independent component analysis (ICA) by optimizing the contrast function of the RADICAL algorithm. The core idea of the proposed optimization method is to combine the global search of a good initial condition with a gradient-descent algorithm. This new ICA algorithm performs faster than the RADICAL algorithm (based on Jacobi rotations) while still preserving, and even enhancing, the strong robustness properties that result from its contrast. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
DNA microarrays provide a huge amount of data and require therefore dimensionality reduction methods to extract meaningful biological information. Independent Component Analysis (ICA) was proposed by several authors as an interesting means. Unfortunately, experimental data are usually of poor quality- because of noise, outliers and lack of samples. Robustness to these hurdles will thus be a key feature for an ICA algorithm. This paper identifies a robust contrast function and proposes a new ICA algorithm. © 2007 IEEE.
Resumo:
In this paper, we present a Statistical Shape Model for Human Figure Segmentation in gait sequences. Point Distribution Models (PDM) generally use Principal Component analysis (PCA) to describe the main directions of variation in the training set. However, PCA assumes a number of restrictions on the data that do not always hold. In this work, we explore the potential of Independent Component Analysis (ICA) as an alternative shape decomposition to the PDM-based Human Figure Segmentation. The shape model obtained enables accurate estimation of human figures despite segmentation errors in the input silhouettes and has really good convergence qualities.
Resumo:
The initial timing of face-specific effects in event-related potentials (ERPs) is a point of contention in face processing research. Although effects during the time of the N170 are robust in the literature, inconsistent effects during the time of the P100 challenge the interpretation of the N170 as being the initial face-specific ERP effect. The interpretation of the early P100 effects are often attributed to low-level differences between face stimuli and a host of other image categories. Research using sophisticated controls for low-level stimulus characteristics (Rousselet, Husk, Bennett, & Sekuler, 2008) report robust face effects starting at around 130 ms following stimulus onset. The present study examines the independent components (ICs) of the P100 and N170 complex in the context of a minimally controlled low-level stimulus set and a clear P100 effect for faces versus houses at the scalp. Results indicate that four ICs account for the ERPs to faces and houses in the first 200ms following stimulus onset. The IC that accounts for the majority of the scalp N170 (icNla) begins dissociating stimulus conditions at approximately 130 ms, closely replicating the scalp results of Rousselet et al. (2008). The scalp effects at the time of the P100 are accounted for by two constituent ICs (icP1a and icP1b). The IC that projects the greatest voltage at the scalp during the P100 (icP1a) shows a face-minus-house effect over the period of the P100 that is less robust than the N 170 effect of icN 1 a when measured as the average of single subject differential activation robustness. The second constituent process of the P100 (icP1b), although projecting a smaller voltage to the scalp than icP1a, shows a more robust effect for the face-minus-house contrast starting prior to 100 ms following stimulus onset. Further, the effect expressed by icP1 b takes the form of a larger negative projection to medial occipital sites for houses over faces partially canceling the larger projection of icP1a, thereby enhancing the face positivity at this time. These findings have three main implications for ERP research on face processing: First, the ICs that constitute the face-minus-house P100 effect are independent from the ICs that constitute the N170 effect. This suggests that the P100 effect and the N170 effect are anatomically independent. Second, the timing of the N170 effect can be recovered from scalp ERPs that have spatio-temporally overlapping effects possibly associated with low-level stimulus characteristics. This unmixing of the EEG signals may reduce the need for highly constrained stimulus sets, a characteristic that is not always desirable for a topic that is highly coupled to ecological validity. Third, by unmixing the constituent processes of the EEG signals new analysis strategies are made available. In particular the exploration of the relationship between cortical processes over the period of the P100 and N170 ERP complex (and beyond) may provide previously unaccessible answers to questions such as: Is the face effect a special relationship between low-level and high-level processes along the visual stream?