972 resultados para maximum angular velocity
Resumo:
A method is described for estimating the incremental angle and angular velocity of a spacecraft using integrated rate parameters with the help of a star sensor alone. The chief advantage of this method is that the measured stars need not be identified, whereas the identification of the stars is necessary in earlier methods. This proposed estimation can be carried out with all of the available measurements by a simple linear Kalman filter, albeit with a time-varying sensitivity matrix. The residuals of estimated angular velocity by the proposed spacecraft incremental-angle and angular velocity estimation method are as accurate as the earlier methods. This method also enables the spacecraft attitude to be reconstructed for mapping the stars into an imaginary unit sphere in the body reference frame, which will preserve the true angular separation of the stars. This will pave the way for identification of the stars using any angular separation or triangle matching techniques applied to even a narrow field of view sensor that is made to sweep the sky. A numerical simulation for inertial as well as Earth pointing spacecraft is carried out to establish the results.
Resumo:
We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an ``engineered'' initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.
Resumo:
When analysing blood spatters, traces often occur which regarding the collision angle, cannot be allocated to any supposed centre of origin. Drops following highly curved (ballistic) trajectories usually form these types of traces. The reconstruction of such trajectories requires knowledge of the mass, the diameter (of which approximations are known) and the velocity of the blood drops. This article provides an upper range of the velocity in relation to the diameter of the blood drops based on physical laws. This is very helpful in analysing ballistic trajectories.
(Appendix B) Magnetic polarity, inclination angle, and maximum angular deviation of ODP Hole 133-812
Resumo:
The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated kinematic patterns in clinically normal German Shepherd dogs (GSDs) compared to those with hip dysplasia and with no clinical signs of lameness. Two groups of GSDs, including 10 clinically healthy dogs (G1) and 10 with hip dysplasia (G2), were trotted on a treadmill at a constant speed. Kinematic data were collected by a 3-camera system and analysed by a motion-analysis program. Flexion and extension joint angles and angular velocities were determined for the shoulder, elbow, carpal, hip, stifle, and tarsal joints.Within each group, the differences between the right and left limbs in all kinematic variables were not significant. Minimum angle, angular displacement and minimum angular velocity did not differ between groups. Significant differences were observed in the maximum angular velocity and maximum angle of the hip joint (dysplastic. >. healthy), and in the maximum angular velocity of the carpal joint (healthy. >. dysplastic). It was concluded that, when trotting on a treadmill, dysplastic dogs with no signs of lameness may present joint kinematic alterations in the hind as well as the forelimbs. © 2012 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)