974 resultados para maximal clique
Resumo:
We present parallel algorithms on the BSP/CGM model, with p processors, to count and generate all the maximal cliques of a circle graph with n vertices and m edges. To count the number of all the maximal cliques, without actually generating them, our algorithm requires O(log p) communication rounds with O(nm/p) local computation time. We also present an algorithm to generate the first maximal clique in O(log p) communication rounds with O(nm/p) local computation, and to generate each one of the subsequent maximal cliques this algorithm requires O(log p) communication rounds with O(m/p) local computation. The maximal cliques generation algorithm is based on generating all maximal paths in a directed acyclic graph, and we present an algorithm for this problem that uses O(log p) communication rounds with O(m/p) local computation for each maximal path. We also show that the presented algorithms can be extended to the CREW PRAM model.
Resumo:
We explore the finish-to-start precedence relations of project activities used in scheduling problems. From these relations, we devise a method to identify groups of activities that could execute concurrently, i.e. activities in the same group can all execute in parallel. The method derives a new set of relations to describe the concurrency. Then, it is represented by an undirected graph and the maximal cliques problem identifies the groups. We provide a running example with a project from our previous studies in resource constrained project cost minimization together with an example application on the concurrency detection method: the evaluation of the resource stress.
Resumo:
This paper describes the design of a parallel algorithm that uses moving fluids in a three-dimensional microfluidic system to solve a nondeterministically polynomial complete problem (the maximal clique problem) in polynomial time. This algorithm relies on (i) parallel fabrication of the microfluidic system, (ii) parallel searching of all potential solutions by using fluid flow, and (iii) parallel optical readout of all solutions. This algorithm was implemented to solve the maximal clique problem for a simple graph with six vertices. The successful implementation of this algorithm to compute solutions for small-size graphs with fluids in microchannels is not useful, per se, but does suggest broader application for microfluidics in computation and control.
Resumo:
To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training's equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals.
Resumo:
The main aim of this investigation was to verify the relationship of the variables measured during a 3-minute all-out test with aerobic (i.e., peak oxygen uptake [(Equation is included in full-text article.)] and intensity corresponding to the lactate minimum [LMI]) and anaerobic parameters (i.e., anaerobic work) measured during a 400-m maximal performance. To measure force continually and to avoid the possible influences caused by turns, the 3-minute all-out effort was performed in tethered swimming. Thirty swimmers performed the following tests: (a) a 3-minute all-out tethered swimming test to determine the final force (equivalent to critical force: CF3-MIN) and the work performed above CF3-MIN (W'3-MIN), (b) a LMI protocol to determine the LMI during front crawl swimming, and (c) a 400-m maximal test to determine the (Equation is included in full-text article.)and total anaerobic contribution (WANA). Correlations between the variables were tested using the Pearson's correlation test (p ≤ 0.05). CF3-MIN (73.9 ± 13.2 N) presented a high correlation with the LMI (1.33 ± 0.08 m·s; p = 0.01) and (Equation is included in full-text article.)(4.5 ± 1.2 L·min; p = 0.01). However, the W'3-MIN (1,943.2 ± 719.2 N·s) was only moderately correlated with LMI (p = 0.02) and (Equation is included in full-text article.)(p = 0.01). In summary, CF3-MIN determined during the 3-minute all-out effort is associated with oxidative metabolism and can be used to estimate the aerobic capacity of swimmers. In contrast, the anaerobic component of this model (W'3-MIN) is not correlated with WANA.
Resumo:
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Resumo:
This study aimed to compare maximal fat oxidation rate parameters between moderate-and low-performance runners. Eighteen runners performed an incremental treadmill test to estimate individual maximal fat oxidation rate (Fat(max)) based on gases measures and a 10,000-m run on a track. The subjects were then divided into a low and moderate performance group using two different criteria: 10,000-m time and VO(2)max values. When groups were divided using 10,000-m time, there was no significant difference in Fat(max) (0.41 +/- 0.16 and 0.27 +/- 0.12 g.min(-1), p = 0.07) or in the exercise intensity that elicited Fat(max) (59.9 +/- 16.5 and 68.7 +/- 10.3 % (V) over dotO(2max), p = 0.23) between the moderate and low performance groups, respectively (p > 0.05). When groups were divided using VO(2max) values, Fat(max) was significantly lower in the low VO(2max) group than in the high VO(2max) group (0.29 +/- 0.10 and 0.47 +/- 0.17 g.min(-1), respectively, p < 0.05) but the intensity that elicited Fat(max) did not differ between groups (64.4 +/- 14.9 and 61.6 +/- 15.4 % VO(2max)). Fat(max) or % VO(2max) that elicited Fat(max) was not associated with 10,000 m time. The only variable associated with 10,000-m running performance was % VO(2max) used during the run (p < 0.01). In conclusion, the criteria used for the division of groups according to training status might influence the identification of differences in Fat(max) or in the intensity that elicits Fat(max).
Resumo:
Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET(2), one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.
Resumo:
Bacurau, RFP, Monteiro, GA, Ugrinowitsch C, Tricoli, V, Cabral, LF, Aoki, MS. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res 23(1): 304-308, 2009-Different stretching techniques have been used during warm-up routines. However, these routines may decrease force production. The purpose of this study was to compare the acute effect of a ballistic and a static stretching protocol on lower-limb maximal strength. Fourteen physically active women (169.3 +/- 8.2 cm; 64.9 +/- 5.9 kg; 23.1 +/- 3.6 years) performed three experimental sessions: a control session (estimation of 45 degrees leg press one-repetition maximum [1RM]), a ballistic session (20 minutes of ballistic stretch and 45 degrees leg press 1RM), and a static session (20 minutes of static stretch and 45 degrees leg press 1RM). Maximal strength decreased after static stretching (213.2 +/- 36.1 to 184.6 +/- 28.9 kg), but it was unaffected by ballistic stretching (208.4 +/- 34.8 kg). In addition, static stretching exercises produce a greater acute improvement in flexibility compared with ballistic stretching exercises. Consequently, static stretching may not be recommended before athletic events or physical activities that require high levels of force. On the other hand, ballistic stretching could be more appropriate because it seems less likely to decrease maximal strength.
Resumo:
de Souza Jr, TP, Fleck, SJ, Simao, R, Dubas, JP, Pereira, B, de Brito Pacheco, EM, da Silva, AC, and de Oliveira, PR. Comparison between constant and decreasing rest intervals: influence on maximal strength and hypertrophy. J Strength Cond Res 24(7): 1843-1850, 2010-Most resistance training programs use constant rest period lengths between sets and exercises, but some programs use decreasing rest period lengths as training progresses. The aim of this study was to compare the effect on strength and hypertrophy of 8 weeks of resistance training using constant rest intervals (CIs) and decreasing rest intervals (DIs) between sets and exercises. Twenty young men recreationally trained in strength training were randomly assigned to either a CI or DI training group. During the first 2 weeks of training, 3 sets of 10-12 repetition maximum (RM) with 2-minute rest intervals between sets and exercises were performed by both groups. During the next 6 weeks of training, the CI group trained using 2 minutes between sets and exercises (4 sets of 8-10RM), and the DI group trained with DIs (2 minutes decreasing to 30 seconds) as the 6 weeks of training progressed (4 sets of 8-10RM). Total training volume of the bench press and squat were significantly lower for the DI compared to the CI group (bench press 9.4%, squat 13.9%) and weekly training volume of these same exercises was lower in the DI group from weeks 6 to 8 of training. Strength (1RM) in the bench press and squat, knee extensor and flexor isokinetic measures of peak torque, and muscle cross-sectional area (CSA) using magnetic resonance imaging were assessed pretraining and posttraining. No significant differences (p <= 0.05) were shown between the CI and DI training protocols for CSA (arm 13.8 vs. 14.5%, thigh 16.6 vs. 16.3%), 1RM (bench press 28 vs. 37%, squat 34 vs. 34%), and isokinetic peak torque. In conclusion, the results indicate that a training protocol with DI is just as effective as a CI protocol over short training periods (6 weeks) for increasing maximal strength and muscle CSA; thus, either type of program can be used over a short training period to cause strength and hypertrophy.
Resumo:
Samogin Lopes, FA, Menegon, EM, Franchini, E, Tricoli, V, and de M. Bertuzzi, RC. Is acute static stretching able to reduce the time to exhaustion at power output corresponding to maximal oxygen uptake? J Strength Cond Res 24(6): 1650-1656, 2010-This study analyzed the effect of an acute static stretching bout on the time to exhaustion (T(lim)) at power output corresponding to (V) over dotO(2)max. Eleven physically active male subjects (age 22.3 +/- 2.8 years, (V) over dotO(2)max 2.7 +/- 0.5 L . min(-1)) completed an incremental cycle ergometer test, 2 muscle strength tests, and 2 maximal tests to exhaustion at power output corresponding to (V) over dotO(2)max with and without a previous static stretching bout. The T(lim) was not significantly affected by the static stretching (164 +/- 28 vs. 150 +/- 26 seconds with and without stretching, respectively, p = 0.09), but the time to reach (V) over dotO(2)max (118 +/- 22 vs. 102 +/- 25 seconds), blood-lactate accumulation immediately after exercise (10.7 +/- 2.9 vs. 8.0 +/- 1.7 mmol . L(-1)), and oxygen deficit (2.4 +/- 0.9 vs. 2.1 +/- 0.7 L) were significantly reduced (p <= 0.02). Thus, an acute static stretching bout did not reduce T(lim) at power output corresponding to (V) over dotO(2)max possibly by accelerating aerobic metabolism activation at the beginning of exercise. These results suggest that coaches and practitioners involved with aerobic dependent activities may use static stretching as part of their warm-up routines without fear of diminishing high-intensity aerobic exercise performance.
Resumo:
The aim of the present study was to compare and correlate training impulse (TRIMP) estimates proposed by Banister (TRIMP(Banister)), Stagno (TRIMP(Stagno)) and Manzi (TRIMP(Manzi)). The subjects were submitted to an incremental test on cycle ergometer with heart rate and blood lactate concentration measurements. In the second occasion, they performed 30 min. of exercise at the intensity corresponding to maximal lactate steady state, and TRIMP(Banister), TRIMP(Stagno) and TRIMP(Manzi) were calculated. The mean values of TRIMP(Banister) (56.5 +/- 8.2 u.a.) and TRIMP(Stagno) (51.2 +/- 12.4 u.a.) were not different (P > 0.05) and were highly correlated (r = 0.90). Besides this, they presented a good agreement level, which means low bias and relatively narrow limits of agreement. On the other hand, despite highly correlated (r = 0.93), TRIMP(Stagno) and TRIMP(Manzi) (73.4 +/- 17.6 u.a.) were different (P < 0.05), with low agreement level. The TRIMP(Banister) e TRIMP(Manzi) estimates were not different (P = 0.06) and were highly correlated (r = 0.82), but showed low agreement level. Thus, we concluded that the investigated TRIMP methods are not equivalent. In practical terms, it seems prudent monitor the training process assuming only one of the estimates.
Resumo:
This study compared measurements of upper body aerobic fitness in elite (EC; n = 7) and intermediate rock climbers (IC; n = 7), and a control group (C; n = 7). Subjects underwent an upper limb incremental test on hand cycle ergometer, with increments of 23 W.min(-1), until exhaustion. Ventilation (VE) data were smoothed to 10 s averages and plotted against time for the visual determination of the first (VT1) and second (VT2) ventilatory thresholds. Peak power output was not different among groups [EC = 130.9 (+/- 11.8) W; IC = 122.1 (+/- 28.4) W; C = 115.4 (+/- 15.1) W], but time to exhaustion was significantly higher in EC than IC and C. VO(2PEAK) was significantly higher in EC [36.8 (+/- 5.7) mL.kg(-1).min(-1)] and IC [35.5 (+/- 5.2) mL.kg(-1).min(-1)] than C [28.8 (+/- 5.0) mL.kg(-1).min(-1)], but there was no difference between EC and IC. VT1 was significantly higher in EC than C [EC = 69.0 (+/- 9.4) W; IC = 62.4 (+/- 13.0) W; C = 52.1 (+/- 11.8) W], but no significant difference was observed in VT2 [EC = 103.5 (+/- 18.8) W; IC = 92.0 (+/- 22.0) W; C = 85.6 (+/- 19.7) W]. These results show that elite indoor rock climbers elicit higher aerobic fitness profile than control subjects when measured with an upper body test.
Resumo:
It has been previously reported that carbohydrate (CHO) mouth rinse can improve exercise performance. The proposed mechanism involves increased activation of brain regions believed to be responsible for reward/motivation and motor control. Since strength-related performance is affected by central drive to the muscles, it seems reasonable to hypothesize that the positive CNS response to oral CHO sensing may counteract the inhibitory input from the muscle afferent pathways minimizing the drop in the central drive. The purpose of the current study was to test if CHO mouth rinse affects maximum strength and strength endurance performance. Twelve recreationally strength-trained healthy males (age 24.08 +/- 2.99 years; height 178.09 +/- 6.70 cm; weight 78.67 +/- 8.17 kg) took part in the study. All of the tests were performed in the morning, after an 8 h overnight fasting. Subjects were submitted to a maximum strength test (1-RM) and a strength endurance test (six sets until failure at 70% of 1-RM), in separate days under three different experimental conditions (CHO mouth rinse, placebo-PLA mouth rinse and control-CON) in a randomized crossover design. The CHO mouth rinse (25 ml) occurred before every attempt in the 1-RM test, and before every set in the endurance strength test. Blood glucose and lactate were measured immediately before and 5 min post-tests. There were no significant differences in 1-RM between experimental conditions (CHO 101 +/- 7.2 kg; PLA 101 +/- 7.4 kg; CON 101 +/- 7.2 kg; p = 0.98). Furthermore, there were no significance between trial differences in the number of repetitions performed in each set (p = 0.99) or the total exercise volume (number of repetitions x load lifted [kg]) (p = 0.98). A main effect for time (p < 0.0001) in blood lactate concentration was observed in both tests (1-RM and strength endurance). Blood glucose concentration did not differ between conditions. In conclusion, CHO mouth rinse does not affect maximum strength or strength endurance performance.
Resumo:
Background The allele threonine (T) of the angiotensinogen has been associated with ventricular hypertrophy in hypertensive patients and soccer players. However, the long-term effect of physical exercise in healthy athletes carrying the T allele remains unknown. We investigated the influence of methionine M or T allele of the angiotensinogen and D or I allele of the angiotensin-converting enzyme on left-ventricular mass index (LVMI) and maximal aerobic capacity in young healthy individuals after long-term physical exercise training. Design Prospective clinical trial. Methods Eighty-three policemen aged between 20 and 35 years (mean +/- SD 26 +/- 4.5 years) were genotyped for the M235T gene angiotensinogen polymorphism (TT, n=25; MM/MT, n=58) and angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism (11, n=18; DD/DI, n=65). Left-ventricular morphology was evaluated by echocardiography and maximal aerobic capacity (VO(2peak)) by cardiopulmonary exercise test before and after 17 weeks of exercise training (50-80% VO(2peak)). Results Baseline VO(2peak) and LVMI were similar between TT and MM/MT groups, and II and DD/DI groups. Exercise training increased significantly and similarly VO(2peak) in homozygous TT and MM/MT individuals, and homozygous II and DD/DI individuals. In addition, exercise training increased significantly LVMI in TT and MM/MT individuals (76.5 +/- 3 vs. 86.7 +/- 4, P=0.00001 and 76.2 +/- 2 vs. 81.4 +/- 2, P=0.00001, respectively), and II and DD/DI individuals (777 +/- 4 vs. 81.5 +/- 4, P=0.0001 and 76 +/- 2 vs. 83.5 +/- 2, P=0.0001, respectively). However, LVMI I in TT individuals was significantly greater than in MM/MT individuals (P=0.04). LVMI was not different between 11 and DD/DI individuals. Conclusion Left-ventricular hypertrophy caused by exercise training is exacerbated in homozygous TT individuals with angiotensinogen polymorphism. Eur J Cardiovasc Prev Rehabil 16:487-492 (C) 2009 The European Society of Cardiology