1000 resultados para matrix habitat


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global trend toward more intensive forms of agriculture is changing the nature of matrix habitat in agricultural areas. Removal of components of matrix habitat can affect native biota at the paddock and the landscape scale, particularly where intensification occurs over large areas. We identify the loss of paddock trees due to the proliferation of centre pivot irrigation in dryland farming areas as a potentially serious threat to the remnant biota of these areas. We used a region of south-eastern Australia as a case study to quantify land use change from grazing and dryland cropping to centre pivot irrigation over a 23-year period. We also estimated rates of paddock tree loss in 5 representative landscapes within the region over the same period. The total area affected by centre pivots increased from 0 ha in 1980 to nearly 9000 ha by 2005. Pivots were more likely to be established in areas which had originally been plains savannah and woodlands containing buloke (Allocasuarina luehmannii), a food source for an endangered bird. On average, 42% of paddock buloke trees present in 1982 were lost by 2005. In the two landscapes containing several centre pivots, the loss was 54% and 70%. This accelerated loss of important components of matrix habitat is likely to result in species declines and local extinctions. We recommend that measures to alleviate the likely negative impacts of matrix habitat loss on native biota be considered as part of regional planning strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most amphibian species have biphasic life histories and undergo an ontogenetic shift from aquatic to terrestrial habitats. In deforested landscapes, streams and forest fragments are frequently disjunct, jeopardizing the life cycle of forest-associated amphibians with aquatic larvae. We tested the impact of habitat split-defined as human-induced disconnection between habitats used by different life-history stages of a species-on four forest-associated amphibian species in a severely fragmented landscape of the Brazilian Atlantic Forest. We surveyed amphibians in forest fragments with and without streams (referred to as wet and dry fragments, respectively), including the adjacent grass-field matrix. Our comparison of capture rates in dry fragments and nearby streams in the matrix allowed us to evaluate the number of individuals that engaged in high-risk migrations through nonforested habitats. Adult amphibians moved from dry fragments to matrix streams at the beginning of the rainy season, reproduced, and returned at the end of the breeding period. Juveniles of the year moved to dry fragments along with adults. These risky reproductive migrations through nonforested habitats that expose individuals to dehydration, predation, and other hazards may cause population declines in dry fragments. Indeed, capture rates were significantly lower in dry fragments compared with wet fragments. Declining amphibians would strongly benefit from investments in the conservation and restoration of riparian vegetation and corridors linking breeding and nonbreeding areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat fragmentation produces patches of suitable habitat surrounded by unfavourable matrix habitat. A species may persist in such a fragmented landscape in an equilibrium between the extinctions and recolonizations of local populations, thus forming a metapopulation. Migration between local populations is necessary for the long-term persistence of a metapopulation. The Glanville fritillary butterfly (Melitaea cinxia) forms a metapopulation in the Åland islands in Finland. There is migration between the populations, the extent of which is affected by several environmental factors and variation in the phenotype of individual butterflies. Different allelic forms of the glycolytic enzyme phosphoglucose isomerase (Pgi) has been identified as a possible genetic factor influencing flight performance and migration rate in this species. The frequency of a certain Pgi allele, Pgi-f, follows the same pattern in relation to population age and connectivity as migration propensity. Furthermore, variation in flight metabolic performance, which is likely to affect migration propensity, has been linked to genetic variation in Pgi or a closely linked locus. The aim of this study was to investigate the association between Pgi genotype and the migration propensity in the Glanville fritillary both at the individual and population levels using a statistical modelling approach. A mark-release-recapture (MRR) study was conducted in a habitat patch network of M. cinxia in Åland to collect data on the movements of individual butterflies. Larval samples from the study area were also collected for population level examinations. Each butterfly and larva was genotyped at the Pgi locus. The MRR data was parameterised with two mathematical models of migration: the Virtual Migration Model (VM) and the spatially explicit diffusion model. VM model predicted and observed numbers of emigrants from populations with high and low frequencies of Pgi-f were compared. Posterior predictive data sets were simulated based on the parameters of the diffusion model. Lack-of-fit of observed values to the model predicted values of several descriptors of movements were detected, and the effect of Pgi genotype on the deviations was assessed by randomizations including the genotype information. This study revealed a possible difference in the effect of Pgi genotype on migration propensity between the two sexes in the Glanville fritillary. The females with and males without the Pgi-f allele moved more between habitat patches, which is probably related to differences in the function of flight in the two sexes. Females may use their high flight capacity to migrate between habitat patches to find suitable oviposition sites, whereas males may use it to acquire mates by keeping a territory and fighting off other intruding males, possibly causing them to emigrate. The results were consistent across different movement descriptors and at the individual and population levels. The effect of Pgi is likely to be dependent on the structure of the landscape and the prevailing environmental conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Following landscape change, species invasions and extinctions may lead to biotic homogenisation, resulting in increased taxonomic and functional similarity between previously distinct biotas. Biotic homogenisation is more likely to occur in landscapes where the matrix contrasts strongly with native vegetation patches. To test this, we examined the distribution of ground-active beetles in a landscape of remnant Eucalyptus open woodland patches where large areas of lower contrast matrix (farmland) are being transformed to high-contrast pine plantations in south-eastern Australia. We sampled beetles from 30 sites including six replicates of five categories; (1) remnants adjacent to farmland, (2) remnants adjacent to plantation, (3) farmland, (4) plantation, and, (5) remnants between pine plantation and farmland. Community composition in the pine matrix was similar to native patches embedded in pine (ANOSIM, Global R=. 0.49, P<. 0.000), which we suggest is due to biotic homogenisation. Remnant patches with edges of both farmland and pine plantation did not represent an intermediate community composition between patches surrounded by either matrix type, but rather a unique habitat with unique species. Farmland supported the greatest number of individuals (. F=. 9.049, df. =. 25, P<. 0.000) and species (. F=. 5.875, df. =. 25, P=. 0.002), even compared to native remnant patches. Our results suggest that matrix transformations can reduce species richness and homogenise within-patch populations. This may increase the risk of species declines in fragmented landscapes where plantations are not only replacing native vegetation patches, but also other matrix types that may better support biodiversity. Our findings are particularly concerning given expanding plantation establishment worldwide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wildlife living in the suburbs faces the challenge of dealing with human presence and yard management (including the occurrence of pets) which vary at the scale of the house block. This study examined the influence of ecological factors (e.g. extent of grass and food availability) and anthropogenic factors (e.g. human activity and garden usage) on breeding site choice and reproductive success of the ground-nesting masked lapwing Vanellus miles on Phillip Island, Australia. Lapwings nested less frequently in residential properties (high levels of human usage) compared with vacant blocks and holiday houses. They were also more likely to breed on properties with high food availability and larger areas of grass. None of these variables influenced clutch size or the probability of eggs hatching, although larger clutches and higher hatching rates tended to be associated with more food. This study shows that, for an urban exploiting species, habitat quality is not homogenous at the scale of the house block, and that human activity is avoided by a species generally considered highly tolerant of people.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Habitat loss and fragmentation are major threats to biodiversity and ecosystem processes. Our current understanding of the impacts of habitat loss and fragmentation is based largely on studies that focus on either short-term or long-term responses. Short-term responses are often used to predict long-term responses and make management decisions. The lack of studies comparing short- and long-term responses to fragmentation means we do not adequately understand when and how well short-term responses can be extrapolated to predict long-term responses, and when or why they cannot. To address this gap, we used data from one of the world's longest-running fragmentation experiments, The Wog Wog Habitat Fragmentation Experiment. Using data for carabid beetles, we found that responses in the long term (more than 22 years post-fragmentation ~ 22 generations) often contrasted markedly with those in the short term (five years post-fragmentation). The total abundance of all carabids, species richness and the occurrence of six species declined in the short term in the fragments but increased over the long term. The occurrence of three species declined initially and continued to decline, whilst another species was positively affected initially but decreased in the long term. Species' responses to the matrix that surrounds the fragments strongly predicted both the direction (increase/decline in occurrence) and magnitude of their responses to fragmentation. Additionally, species' responses to the matrix were somewhat predicted by their preferences for different types of native habitat (open vs. shaded). Our study highlights the degree of the matrix's influence in fragmented landscapes, and how this influence can change over time. We urge caution in using short-term responses to forecast long-term responses in cases where the matrix a) impacts species' responses to fragmentation (by isolating them, creating new habitat or altering fragment habitat) and b) is likely to change through time. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joern Fischer, David B. Lindermayer, and Ioan Fazey (2004). Appreciating Ecological Complexity: Habitat Contours as a Conceptual Landscape Model. Conservation Biology, 18 (5)pp.1245-1253 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Once abundant, the Newfoundland Gray-cheeked Thrush (Catharus minimus minimus) has declined by as much as 95% since 1975. Underlying cause(s) of this population collapse are not known, although hypotheses include loss of winter habitat and the introduction of red squirrels (Tamiasciurus hudsonicus) to Newfoundland. Uncertainties regarding habitat needs are also extensive, and these knowledge gaps are an impediment to conservation. We investigated neighborhood (i.e., within 115 m [4.1 ha]) and landscape scale (i.e., within 1250 m [490.8 ha]) habitat associations of Gray-cheeked Thrush in a 200-km² study area in the Long Range Mountains of western Newfoundland, where elevations range from 300-600 m and landcover was a matrix of old growth fir forest, 6- to 8-year-old clearcuts, coniferous scrub, bogs, and barrens. Thrushes were restricted to elevations above ~375 m, and occurrence was strongly positively related to elevation. Occurrence was also positively related to cover of tall scrub forest at the neighborhood scale, and at the landscape scale showed curvilinear relations with the proportion of both tall scrub and old growth forest that peaked with intermediate amounts of cover. Occurrence of thrushes was also highest when clearcuts made up 60%-70% of neighborhood landcover, but was negatively related to cover of clearcuts in the broader landscape. Finally, occurrence was highest in areas having 50% cover of partially harvested forest (strip cuts or row cuts) at the neighborhood scale, but because this treatment was limited to one small portion of the study area, this finding may be spurious. Taken together, our results suggest selection for mixed habitats and sensitivity to both neighborhood and landscape-scale habitat. More research is needed on responses of thrushes to forestry, including use of older clearcuts, partially harvested stands, and precommercially thinned clearcuts. Finally, restriction of thrushes to higher elevations is consistent with the hypothesis that they have been impacted by squirrels, because squirrels were rare or absent at these elevations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity. Objective To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments. Methods Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses. Results Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification. Conclusions Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The matrix-tolerance hypothesis suggests that the most abundant species in the inter-habitat matrix would be less vulnerable to their habitat fragmentation. This model was tested with leaf-litter frogs in the Atlantic Forest where the fragmentation process is older and more severe than in the Amazon, where the model was first developed. Frog abundance data from the agricultural matrix, forest fragments and continuous forest localities were used. We found an expected negative correlation between the abundance of frogs in the matrix and their vulnerability to fragmentation, however, results varied with fragment size and species traits. Smaller fragments exhibited stronger matrix-vulnerability correlation than intermediate fragments, while no significant relation was observed for large fragments. Moreover, some species that avoid the matrix were not sensitive to a decrease in the patch size, and the opposite was also true, indicating significant differences with that expected from the model. Most of the species that use the matrix were forest species with aquatic larvae development, but those species do not necessarily respond to fragmentation or fragment size, and thus affect more intensively the strengthen of the expected relationship. Therefore, the main relationship expected by the matrix-tolerance hypothesis was observed in the Atlantic Forest; however we noted that the prediction of this hypothesis can be substantially affected by the size of the fragments, and by species traits. We propose that matrix-tolerance model should be broadened to become a more effective model, including other patch characteristics, particularly fragment size, and individual species traits (e. g., reproductive mode and habitat preference).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Map comparison is a relatively uncommon practice in acoustic seabed classification to date, contrary to the field of land remote sensing, where it has been developed extensively over recent decades. The aim here is to illustrate the benefits of map comparison in the underwater realm with a case study of three maps independently describing the seabed habitats of the Te Matuku Marine Reserve (Hauraki Gulf, New Zealand). The maps are obtained from a QTC View classification of a single-beam echosounder (SBES) dataset, manual segmentation of a sidescan sonar (SSS) mosaic, and automatic classification of a backscatter dataset from a multibeam echosounder (MBES). The maps are compared using pixel-to-pixel similarity measures derived from the literature in land remote sensing. All measures agree in presenting the MBES and SSS maps as the most similar, and the SBES and SSS maps as the least similar. The results are discussed with reference to the potential of MBES backscatter as an alternative to SSS mosaic for imagery segmentation and to the potential of joint SBES–SSS survey for improved habitat mapping. Other applications of map-similarity measures in acoustic classification of the seabed are suggested.