999 resultados para mathematical connections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this action research study of my classroom of seventh grade mathematics, I investigated the use of non-traditional activities to enhance mathematical connections. The types of nontraditional activities used were hands-on activities, written explanations, and oral communication that required students to apply a new mathematical concept to either prior knowledge or a realworld application. I discovered that the use of non-traditional activities helped me reach a variety of learners in my classroom. These activities also increased my students’ abilities to apply their mathematical knowledge to different applications. Having students explain their reasoning during non-traditional activities improved their communications skills, both orally and in writing. As a result of this research, I plan to incorporate more non-traditional activities into my curriculum. In doing so, I hope to continue to increase my students’ abilities to solve problems. I also plan to incorporate the use of written explanations of my students’ mathematical reasoning in order to continue to improve their communication of mathematics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, pre-service teachers' mathematics content knowledge is explored through the analysis of two items about ratio from a Mathematical Competency, Skills and Knowledge Test. Pre-service teachers' thinking strategies, common errors and misconceptions in their responses are presented and discussed. Of particular interest was the range and nature of common incorrect responses for one whole-whole ratio question. Results suggested pre-service teachers had difficulty interpreting a worded multi-step, ratio (scale) question, with errors relating to ratio and/or conversion of measurement knowledge. These difficulties reveal underdeveloped knowledge of mathematical structure and mathematical connections as well as an inability to deconstruct key components of a mathematical problem. Most pre-service teachers also lacked knowledge of standard procedures and methods of solutions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A professional learning program for teachers of junior secondary mathematics regarding the content and pedagogy of senior secondary mathematics is the context for this study of teachers’ mathematical and pedagogical knowledge. The analysis of teachers’ reflections on their learning explored teachers’ understanding of mathematical connections and their appreciation of mathematical structure. The findings indicate that a professional learning program about senior secondary mathematics can enable practicing teachers to deepen and broaden their knowledge for teaching junior secondary mathematics and develop their practice to support their students’ present and future learning of mathematics. Further research is needed about professional learning approaches and tasks that may enable teachers to imbed and develop awareness of structure in their practice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabasi-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q > 2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes preservice teachers' reported experience of problem posing based on self-selected original digital images. The 176 participants from Australia and Canada designed open-ended problems as part of their mathematics education course. Their 444 problems and accompanying photos have been analysed lo explore the types of problems posed and the focus of the mathematical connections. Findings indicate that preservice teachers are challenged when posing open-ended problems however, this process enables them to develop strategies for problem posing and to become more critically aware of the mathematical potential within their environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Educação Pré-Escolar, Escola Superior de Educação e Comunicação, Universidade do Algarve, 2016

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Introduction Japanese Lesson Study first came to world-wide attention through Makoto Yoshida’s doctoral dissertation (Yoshida, 1999; Fernandez & Yoshida, 2004) and Stigler and Hiebert’s (1999) accounts of Lesson Study based on the Third International Mathematics and Science Study (TIMSS). By 2004, Lesson Study was taking place in the USA in at least 32 states and 150 lesson study clusters.Lewis (2002) describes the Lesson Study Cycle as having four phases: goal-setting and planning – including the development of the Lesson Plan; teaching the “research lesson” – enabling the lesson observation; the post-lesson discussion; and the resulting consolidation of learning, which has many far-reaching consequences (see, for example, Lewis & Tsuchida, 1998). It could be said that research lessons make participants and observers think quite profoundly about specific and general aspects of teaching.In Japan, Lesson Study occurs across many curriculum areas, mainly at the elementary school level, and to a lesser extent junior secondary. In mathematics, the research lesson usually follows the typical lesson pattern for a Japanese “structured problem solving lesson”.Major characteristics of such lessons include: the hatsumon – the thought-provoking question or problem that students engage with and that is the key to students’ mathematical development and mathematical connections; kikan-shido – sometimes referred to as the “purposeful scanning” that takes place while students are working individually or in groups, which allows teachers not only to monitor students’ strategies but also to orchestrate their reports on their solutions in the neriage phase of the lesson; neriage – the “kneading” stage of alesson that allows students to compare, polish and refine solutions through the teacher’s orchestration and probing of student solutions; and matome — the summing up and careful review of students’ discussion in order to guide them to higher levels of mathematical sophistication (see, for example, Shimizu, 1999).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The analysis of steel and composite frames has traditionally been carried out by idealizing beam-to-column connections as either rigid or pinned. Although some advanced analysis methods have been proposed to account for semi-rigid connections, the performance of these methods strongly depends on the proper modeling of connection behavior. The primary challenge of modeling beam-to-column connections is their inelastic response and continuously varying stiffness, strength, and ductility. In this dissertation, two distinct approaches—mathematical models and informational models—are proposed to account for the complex hysteretic behavior of beam-to-column connections. The performance of the two approaches is examined and is then followed by a discussion of their merits and deficiencies. To capitalize on the merits of both mathematical and informational representations, a new approach, a hybrid modeling framework, is developed and demonstrated through modeling beam-to-column connections. Component-based modeling is a compromise spanning two extremes in the field of mathematical modeling: simplified global models and finite element models. In the component-based modeling of angle connections, the five critical components of excessive deformation are identified. Constitutive relationships of angles, column panel zones, and contact between angles and column flanges, are derived by using only material and geometric properties and theoretical mechanics considerations. Those of slip and bolt hole ovalization are simplified by empirically-suggested mathematical representation and expert opinions. A mathematical model is then assembled as a macro-element by combining rigid bars and springs that represent the constitutive relationship of components. Lastly, the moment-rotation curves of the mathematical models are compared with those of experimental tests. In the case of a top-and-seat angle connection with double web angles, a pinched hysteretic response is predicted quite well by complete mechanical models, which take advantage of only material and geometric properties. On the other hand, to exhibit the highly pinched behavior of a top-and-seat angle connection without web angles, a mathematical model requires components of slip and bolt hole ovalization, which are more amenable to informational modeling. An alternative method is informational modeling, which constitutes a fundamental shift from mathematical equations to data that contain the required information about underlying mechanics. The information is extracted from observed data and stored in neural networks. Two different training data sets, analytically-generated and experimental data, are tested to examine the performance of informational models. Both informational models show acceptable agreement with the moment-rotation curves of the experiments. Adding a degradation parameter improves the informational models when modeling highly pinched hysteretic behavior. However, informational models cannot represent the contribution of individual components and therefore do not provide an insight into the underlying mechanics of components. In this study, a new hybrid modeling framework is proposed. In the hybrid framework, a conventional mathematical model is complemented by the informational methods. The basic premise of the proposed hybrid methodology is that not all features of system response are amenable to mathematical modeling, hence considering informational alternatives. This may be because (i) the underlying theory is not available or not sufficiently developed, or (ii) the existing theory is too complex and therefore not suitable for modeling within building frame analysis. The role of informational methods is to model aspects that the mathematical model leaves out. Autoprogressive algorithm and self-learning simulation extract the missing aspects from a system response. In a hybrid framework, experimental data is an integral part of modeling, rather than being used strictly for validation processes. The potential of the hybrid methodology is illustrated through modeling complex hysteretic behavior of beam-to-column connections. Mechanics-based components of deformation such as angles, flange-plates, and column panel zone, are idealized to a mathematical model by using a complete mechanical approach. Although the mathematical model represents envelope curves in terms of initial stiffness and yielding strength, it is not capable of capturing the pinching effects. Pinching is caused mainly by separation between angles and column flanges as well as slip between angles/flange-plates and beam flanges. These components of deformation are suitable for informational modeling. Finally, the moment-rotation curves of the hybrid models are validated with those of the experimental tests. The comparison shows that the hybrid models are capable of representing the highly pinched hysteretic behavior of beam-to-column connections. In addition, the developed hybrid model is successfully used to predict the behavior of a newly-designed connection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we associate a new geometric invariant to the space of fiat connections on a G (= SU(2))-bundle on a compact Riemann surface M and relate it tcr the symplectic structure on the space Hom(pi(1)(M), G)/G consisting of representations of the fundamental group pi(1)(M) Of M into G module the conjugate action of G on representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A geometric invariant is associated to the parabolic moduli space on a marked surface and is related to the symplectic structure of the moduli space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as E-f, the fibroblast resting-membrane potential, the fibroblast conductance G(f), and the MF gap-junctional coupling G(gap). Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as G(gap), G(f), and E-f, and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity CV decreases as a function of G(gap), for zero-sided and one-sided couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of G(gap), and, eventually, we observe that conduction failure occurs for low values of G(gap). In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling G(gap) or E-f. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Along the internal carotid artery (ICA), atherosclerotic plaques are often located in its cavernous sinus (parasellar) segments (pICA). Studies indicate that the incidence of pre-atherosclerotic lesions is linked with the complexity of the pICA; however, the pICA shape was never objectively characterized. Our study aims at providing objective mathematical characterizations of the pICA shape. Methods and results Three-dimensional (3D) computer models, reconstructed from contrast enhanced computed tomography (CT) data of 30 randomly selected patients (60 pICAs) were analyzed with modern visualization software and new mathematical algorithms. As objective measures for the pICA shape complexity, we provide calculations of curvature energy, torsion energy, and total complexity of 3D skeletons of the pICA lumen. We further measured the posterior knee of the so-called ""carotid siphon"" with a virtual goniometer and performed correlations between the objective mathematical calculations and the subjective angle measurements. Conclusions Firstly, our study provides mathematical characterizations of the pICA shape, which can serve as objective reference data for analyzing connections between pICA shape complexity and vascular diseases. Secondly, we provide an objective method for creating Such data. Thirdly, we evaluate the usefulness of subjective goniometric measurements of the angle of the posterior knee of the carotid siphon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much advice about teaching for understanding implies that teacher should help children to develop connections between aspects of their experience, knowledge, and skills. This paper outlines points from the literature about different types of connections and describes relevant points from four case study teachers said and did.