943 resultados para material flow control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chair of Transportation and Ware-housing at the University of Dortmund together with its industrial partner has developed and implemented a decentralized control system based on embedded technology and Internet standards. This innovative, highly flexible system uses autonomous software modules to control the flow of unit loads in real-time. The system is integrated into Chair’s test facility consisting of a wide range of conveying and sorting equipment. It is built for proof of concept purposes and will be used for further research in the fields of decentralized automation and embedded controls. This presentation describes the implementation of this decentralized control system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today’s material flow systems for mass customization or dynamic productions are usually realized with manual transportation systems. However new concepts in the domain of material flow and device control like function-oriented modularization and intelligent multi-agent-systems offer the possibility to employ changeable and automated material flow systems in dynamic production structures. These systems need the ability to react on unplanned and unexpected events autonomously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research employs solid-state actuators for delay of flow separation seen in airfoils at low Reynolds numbers. The flow control technique investigated here is aimed for a variable camber airfoil that employs two active surfaces and a single four-bar (box) mechanism as the internal structure. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by a total of nine piezocomposite actuated clamped-free unimorph benders distributed in the spanwise direction. An electromechanical model is employed to design an actuator capable of high deformations at the desired frequency for lift improvement at post-stall angles. The optimum spanwise distribution of excitation for increasing lift coefficient is identified experimentally in the wind tunnel. A 3D (non-uniform) excitation distribution achieved higher lift enhancement in the post-stall region with lower power consumption when compared to the 2D (uniform) excitation distribution. A lift coefficient increase of 18.4% is achieved with the identified non-uniform excitation mode at the bender resonance frequency of 125 Hz, the flow velocity of 5 m/s and at the reduced frequency of 3.78. The maximum lift (Clmax) is increased 5.2% from the baseline. The total power consumption of the flow control technique is 639 mW(RMS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research presented here employs solid-state actuators for flow separation delay or for forced attachment of separated flow seen in airfoils at low Reynolds numbers. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by Macro-Fiber Composite actuated clamped-free unimorph benders. An electromechanical model of the unimorph is briefly presented and parametric study is conducted to aid the design of a unimorph to output high deformation at a desired frequency. The optimum frequency and amplitude for lift improvement at post-stall angles are identified experimentally. Along with aerodynamic force and structural displacement measurements, helium bubble flow visualization is used to verify existing separated flow, and the attached flow induced by flow control. The lift enhancement induced by several flow control techniques is compared. A symmetric and non-uniform (3D) flow excitation results in the maximum lift enhancement at post-stall region at the lowest power consumption level. A maximum lift coefficient increase of 27.5% (in the post-stall region) is achieved at 125 Hz periodic excitation, with the 3D symmetric actuation mode at 5 m/s and the reduced frequency of 3.78. C(l,max) is increased 7.6% from the baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerodynamic drag is known to be one of the factors contributing more to increased aircraft fuel consumption. The primary source of skin friction drag during flight is the boundary layer separation. This is the layer of air moving smoothly in the immediate vicinity of the aircraft. In this paper we discuss a cyber-physical system approach able of performing an efficient suppression of the turbulent flow by using a dense sensing deployment to detect the low pressure region and a similarly dense deployment of actuators to manage the turbulent flow. With this concept, only the actuators in the vicinity of a separation layer are activated, minimizing power consumption and also the induced drag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material throughput is a means of measuring the so-called social metabolism, or physical dimensions of a society’s consumption, and can be taken as an indirect and approximate indicator of sustainability. Material flow accounting can be used to test the dematerialisation hypothesis, the idea that technological progress causes a decrease in total material used (strong dematerialisation) or material used per monetary unit of output (weak dematerialisation). This paper sets out the results of a material flow analysis for Spain for the period from 1980 to 2000. The analysis reveals that neither strong nor weak dematerialisation took place during the period analysed. Although the population did not increase considerably, materials mobilised by the Spanish economy (DMI) increased by 85% in absolute terms, surpassing GDP growth. In addition, Spain became more dependent on external trade in physical terms. In fact, its imports are more than twice the amount of its exports in terms of weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical background paper describes the methods applied and data sources used in the compilation of the 1980-2003 data set for material flow accounts of the Mexican economy and presents the data set. It is organised in four parts: the first part gives an overview of the Material Flow Accounting (MFA) methodology. The second part presents the main material flows of the Mexican economy including biomass, fossil fuels, metal ores, industrial minerals and, construction minerals. The aim of this part is to explain the procedures and methods followed, the data sources used as well as providing a brief evaluation of the quality and reliability of the information used and the accounts established. Finally, some conclusions will be provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we compare the resource flows of Chile, Ecuador, Mexico and Peru between 1980 and 2000. In this time span, the domestic extraction of materials increased in the four countries, mainly due to the mining sector in Chile and Peru, biomass and oil in Ecuador and construction minerals in Mexico. Imports and exports increased too, due to the increasing integration in the international markets, prompted by the liberalization policies undertaken by the four countries between the late 1970s and the late 1990s. The four countries had a negative physical trade balance for most of the period analyzed, meaning that their exports exceeded their imports in terms of weight. However, the increase of imports reduced the physical deficit in Chile, Mexico and Peru. Ecuador’s physical deficit was the highest and did not decrease in the period analyzed. Also, a diversification of exports away from bulk commodities could be observed in Chile and Mexico, and to a lesser extent in Peru, whereas in Ecuador the export sector remained mainly based on oil and biomass. More research is needed to explore the environmental effects of this phenomenon. Also, the indirect flows associated to the direct physical flows deserve to be subject to further analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted for the purpose of evaluating a new concept for a bank-protection structure: The Iowa Vane . The underlying idea involves countering the torque exerted on the primary flow by its curvature and vertical velocity gradient, thereby eliminating or significantly reducing the secondary flow and thus reducing the undermining of the outer banks and the high-velocity attack on it. The new structure consists of an array of short, vertical, submerged vanes installed with a certain orientation on the channel bed. A relatively small number of vanes can produce bend flows which are practically uniform across the channel. The height of the vanes is less than half the water depth, and their angle with the flow direction is of the order of l0 degrees. In this study, design relations have been established. The relations, and the vanes' overall performance, have been tested in a laboratory model under different flow and sediment conditions. The results are used for the design of an Iowa-Vane bank protection structure for a section of East Nishnabotna River along U.S. Highway 34 at Red Oak, Iowa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la presente tesis los propósitos principales son la adecuada conceptualización y presentación del manejo de flujos materiales; nueva tendencia que ha generado expectativas en el exterior principalmente en industrias europeas y de Norte América. Además se busca dentro del presente trabajo analizar las connotaciones y oportunidades de la aplicación del manejo de flujos materiales en una empresa especifica de nuestro país, “PROSISA” Productos sintéticos S.A., considerando también las incidencias que esto podría tener en la industria general de Plásticos. Con el prenombrado análisis también se busca identificar las perspectivas que la empresa de sintéticos pueda tener al aplicar el manejo de flujos materiales dentro de su proceso productivo principalmente con los desperdicios y posibles soluciones para optimizar los recursos empleados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microactuator made from poly(vinylidene fluoride) (PVDF), a piezoelectric polymer, was fabricated to control the gas flow rate through a glass micronozzle. The actuator was formed by gluing together two PVDF sheets with opposite polarization directions. The sheets were covered with thin conducting films on one side, that were then used as electrodes to apply an electric field to move the valve. The actuator has a rectangular shape, 3 mm x 6 mm. The device was incorporated with a micronozzle fabricated by a powder blasting technique. Upon applying a DC voltage across the actuator electrodes, one sheet expands while the other contracts, generating an opening motion. A voltage of +300 V DC was used to open the device by moving the actuator 30 mu m, and a voltage of -200 V DC was used to close the device by moving the actuator 20 mu m lower than the relaxed position. Flow measurements were performed in a low-pressure vacuum system, maintaining the microvalve inlet pressure constant at 266 Pa. Tests carried out with the actuator in the open position and with a pressure ratio (inlet pressure divided by outlet pressure) of 0.5, indicated a flow rate of 0.36 sccm. In the closed position, and with a pressure ratio of 0.2, a flow rate of 0.32 sccm was measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a simplified architecture of a neurofuzzy controller for general purpose applications that tries to minimize the processing used in the several stages of hazy modeling of systems. The basic procedures of fuzzification and defuzzification are simplified to the maximum while the inference procedures are computed in a private way. The simplified architecture allows a fast and easy configuration of the neurofuzzy controller and the structuring rules that define the control actions is automatic. Th controller's Limits and performance are standardized and the control actions are previously calculated. For application, the industrial systems of fluid flow control will be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a fabrication and test sequence of microvalves installed on micronozzles. The technique used to fabricate the micronozzles was powder blasting. The microvalves are actuators made from PVDF (polivinylidene fluoride), that is a piezoelectric polymer. The micronozzles have convergent-divergent shape with external diameter of 1mm and throat around 230μm. The polymer have low piezoelectric coefficient, for this reason a bimorph structure with dimensions of 2mm width and 4mm of length was build (two piezoelectric sheets were glued together with opposite polarization). Both sheets are recovered with a conductor thin film used as electrodes. Applying a voltage between the electrodes one sheet expands while the other contracts and this generate a vertical movement to the entire actuator. Appling +300V DC between the electrodes the volume flux rate, for a pressure ratio of 0.5, was 0.36 sccm. Applying -200V DC between the electrodes (that means it closed) the volume flux rate was 0.32 sccm, defining a possible range of flow between 0.32 and 0.36 sccm. The third measurement was performed using AC voltage (200V AC with frequency of 1Hz), where the actuator was oscillating. For pressure ratio of 0.5, the flow rate was 0.62 sccm. © 2008 IOP Publishing Ltd.