949 resultados para massive vectorial boson
Resumo:
Massive particles of spin 0 and 1 violate the equivalence principle (EP) at the tree level. on the other hand, if these particles are massless, they agree with the EP, which leads us to conjecture that from a semiclassical viewpoint massless particles, no matter what their spin, obey the EP. General relativity predicts a deflection angle of 2.63' for a nonrelativistic spinless massive boson passing close to the Sun, while for a massive vectorial boson of spin 1 the corresponding deflection is 2.62'.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The classification of the regularization ambiguity of a 2D fermionic determinant in three different classes according to the number of second-class constraints, including the new Faddeevian regularization, is examined and extended. We find a new and important result that the Faddeevian class, with three second-class constraints, possesses a free continuous one parameter family of elements. The criterion of unitarity restricts the parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraint class. We studied the restriction imposed by the interference of right-left modes of the chiral Schwinger model (χQED2) using Stone's soldering formalism. The interference effects between right and left movers, producing the massive vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraint class which is the only nonambiguous class with a unique regularization parameter. ©1999 The American Physical Society.
Resumo:
It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity - a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle - is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle. © World Scientific Publishing Company.
Resumo:
Using a synthesis of the functional integral and operator approaches we discuss the fermion-buson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED, with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED, with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Theta-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content. (C) 2002 Elsevier B.V. (USA).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse-momentum qT. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale q⁎, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.
Resumo:
We calculate the gravitational deflection of massive particles moving with relativistic velocity in the solar system to second post-Newtonian order. For a particle passing close to the Sun with impact parameter b, the deflection in classical general relativity is Phi(C)[GRAPHICS]where v(0) is the particle speed at infinity and M is the Sun's mass. We compute afterwards the gravitational deflection of a spinless neutral particle of mass m in the same static gravitational field as above, treated now as an external field. For a scalar boson with energy E, the deflection in semiclassical general relativity (SGR) is Phisc[GRAPHICS]This result shows that the propagation of the =2E spinless massive boson produces inexorably dispersive effects. It also shows that the semiclassical prediction is always greater than the geometrical one, no matter what the boson mass is. In addition, it is found that SGR predicts a deflection angle of similar to2.6 arcsec for a nonrelativistic spinless massive boson passing at the Sun's limb.
Resumo:
We consider the contributions to the neutrinoless double beta decays in a SU(3)L⊗U(1)N electroweak model. We show that for a range of parameters in the model there are diagrams involving vector-vector-scalar and trilinear scalar couplings which can be potentially as contributing as the light massive Majorana neutrino exchange one. We use these contributions to obtain constraints upon some mass scales of the model, such as the masses of the new charged vector and scalar bosons. We also consider briefly the decay in which, in addition to the two electrons, a Majoron-like boson is emitted. ©2001 The American Physical Society.
Resumo:
Understanding the natural variability of the Earth's climate system and accurately identifying potential anthropogenic influences requires long term, geographically distributed records of key climate indicators, such as temperature and precipitation that extend prior to the last 400. years of the Holocene. Reef corals provide an excellent source of high resolution climate records, and importantly represent the tropical marine environment where palaeoclimate data are urgently required. Recent decades have seen significant improvement in our understanding of coral biomineralisation, the associated uptake of geochemical proxies and methods of identifying and understanding the effects of both early and late, post depositional diagenetic alteration. These processes all have significant implications for interpreting geochemical proxies relevant to palaeoclimatic reconstructions. This paper reviews the current 'state of the art' in terms of coral based palaeoclimate reconstructions and highlights a key remaining problem. The majority of coral based palaeoclimate research has been derived from massive colonies of Porites. However, massive Porites are not globally abundant and may not provide material of a particular age of interest in those regions where they are present. Therefore, there is great potential for alternate coral genera to act as complimentary climate archives. While it remains critical to consider five key factors - vital effects, differential growth morphologies, geochemical heterogeneity in the skeletal ultrastructure, transfer equation selection and diagenetic screening of skeletal material - in order to allow the highest level of accuracy in coral palaeoclimate reconstructions, it is also important to develop alternate taxa for palaeoclimate studies in regions where Porites colonies are absent or rare. Currently as many as nine genera other than Porites have proven at least limited utility in palaeothermometry, most of which are found in the Atlantic/Caribbean region where massive Porites do not exist. Even branching taxa such as Acropora have significant potential to preserve environmental archives. Increasing this capability will greatly expand the number of potential geochemical archives available for longer term temporal records of palaeoclimate.
Resumo:
The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide.
Resumo:
We report sensitive high mass resolution ion microprobe, stable isotopes (SHRIMP SI) multiple sulfur isotope analyses (32S, 33S, 34S) to constrain the sources of sulfur in three Archean VMS deposits—Teutonic Bore, Bentley, and Jaguar—from the Teutonic Bore volcanic complex of the Yilgarn Craton, Western Australia, together with sedimentary pyrites from associated black shales and interpillow pyrites. The pyrites from VMS mineralization are dominated by mantle sulfur but include a small amount of slightly negative mass-independent fractionation (MIF) anomalies, whereas sulfur from the pyrites in the sedimentary rocks has pronounced positive MIF, with ∆33S values that lie between 0.19 and 6.20‰ (with one outlier at −1.62‰). The wall rocks to the mineralization include sedimentary rocks that have contributed no detectable positive MIF sulfur to the VMS deposits, which is difficult to reconcile with the leaching model for the formation of these deposits. The sulfur isotope data are best explained by mixing between sulfur derived from a magmatic-hydrothermal fluid and seawater sulfur as represented by the interpillow pyrites. The massive sulfide lens pyrites have a weighted mean ∆33S value of −0.27 ± 0.05‰ (MSWD = 1.6) nearly identical with −0.31 ± 0.08‰ (MSWD = 2.4) for pyrites from the stringer zone, which requires mixing to have occurred below the sea floor. We employed a two-component mixing model to estimate the contribution of seawater sulfur to the total sulfur budget of the two Teutonic Bore volcanic complex VMS deposits. The results are 15 to 18% for both Teutonic Bore and Bentley, much higher than the 3% obtained by Jamieson et al. (2013) for the giant Kidd Creek deposit. Similar calculations, carried out for other Neoarchean VMS deposits give value between 2% and 30%, which are similar to modern hydrothermal VMS deposits. We suggest that multiple sulfur isotope analyses may be used to predict the size of Archean VMS deposits and to provide a vector to ore deposit but further studies are needed to test these suggestions.
Resumo:
We explore the use of polarized e(+)/e(-) beams and/or the information on final state decay lepton polarizations in probing the interaction of the Higgs boson with a pair of vector bosons. A model independent analysis of the process e(+)e(-) -> f (f) over barH, where f is any light fermion, is carried out through the construction of observables having identical properties under the discrete symmetry transformations as different individual anomalous interactions. This allows us to probe an individual anomalous term independent of the others. We find that initial state beam polarization can significantly improve the sensitivity to CP-odd couplings of the Z boson with the Higgs boson (ZZH). Moreover, an ability to isolate events with a particular tau helicity, with even 40% efficiency, can improve sensitivities to certain ZZH couplings by as much as a factor of 3. In addition, the contamination from the ZZH vertex contributions present in the measurement of the trilinear Higgs-W (WWH) couplings can be reduced to a great extent by employing polarized beams. The effects of initial state radiation and beamstrahlung, which can be relevant for higher values of the beam energy are also included in the analysis.