935 resultados para mass spectrometry, CE-ICP-MS, actinides
Resumo:
This work evaluated the capabilities of inductively coupled plasma mass spectrometry (ICP-MS) for elemental analysis of trace evidence. A method was developed and validated for the analysis of glass by ICP-MS. A database of ∼700 glass samples was analyzed for elemental composition by external calibration with internal standardization (EC) ICP-MS and refractive index (RI). Additional methods were developed during the course of this work using two well-known techniques, isotope dilution (ID) and laser ablation (LA). These methods were then applied to analyze subsets of this database. ICP-MS data from 161 containers, 45 headlamps, and 458 float glasses (among them at least 143 vehicle windows) are presented and summarized. Data from the analysis of ∼190 glass samples collected from a single glass manufacturing facility over a period of 53 months at different intervals, including 97 samples collected in a 24 hour period are presented. Data from the analysis of 125 glass samples representing 36 manufacturing plants in the U.S. are also presented. ^ The three methods used, ICP-MS, ID-ICP-MS and LA-ICP-MS, were shown to be excellent methods for distinguishing between different glass samples. The database provided information about the variability of refractive index and elemental composition in glasses from diverse population types. Using the proposed methods, the database supports the hypothesis that different glass samples have different elemental profiles and a comparison between fragments from the same source results in indistinguishable profiles. ^
Resumo:
The necessity of elemental analysis techniques to solve forensic problems continues to expand as the samples collected from crime scenes grow in complexity. Laser ablation ICP-MS (LA-ICP-MS) has been shown to provide a high degree of discrimination between samples that originate from different sources. In the first part of this research, two laser ablation ICP-MS systems were compared, one using a nanosecond laser and another a femtosecond laser source for the forensic analysis of glass. The results showed that femtosecond LA-ICP-MS did not provide significant improvements in terms of accuracy, precision and discrimination, however femtosecond LA-ICP-MS did provide lower detection limits. In addition, it was determined that even for femtosecond LA-ICP-MS an internal standard should be utilized to obtain accurate analytical results for glass analyses. In the second part, a method using laser induced breakdown spectroscopy (LIBS) for the forensic analysis of glass was shown to provide excellent discrimination for a glass set consisting of 41 automotive fragments. The discrimination power was compared to two of the leading elemental analysis techniques, μXRF and LA-ICP-MS, and the results were similar; all methods generated >99% discrimination and the pairs found indistinguishable were similar. An extensive data analysis approach for LIBS glass analyses was developed to minimize Type I and II errors en route to a recommendation of 10 ratios to be used for glass comparisons. Finally, a LA-ICP-MS method for the qualitative analysis and discrimination of gel ink sources was developed and tested for a set of ink samples. In the first discrimination study, qualitative analysis was used to obtain 95.6% discrimination for a blind study consisting of 45 black gel ink samples provided by the United States Secret Service. A 0.4% false exclusion (Type I) error rate and a 3.9% false inclusion (Type II) error rate was obtained for this discrimination study. In the second discrimination study, 99% discrimination power was achieved for a black gel ink pen set consisting of 24 self collected samples. The two pairs found to be indistinguishable came from the same source of origin (the same manufacturer and type of pen purchased in different locations). It was also found that gel ink from the same pen, regardless of the age, was indistinguishable as were gel ink pens (four pens) originating from the same pack.
Resumo:
The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of materials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar 16O1H+, and 40Ca 16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the analytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 μg g-1 and 0.14 μg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. ^ The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. ^ Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis) samples was achieved using the developed method. ^
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for μXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for μXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for μXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of aterials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and 40Ca16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the nalytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 ìg g-1 and 0.14 ìg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis)samples was achieved using the developed method.
Resumo:
The necessity of elemental analysis techniques to solve forensic problems continues to expand as the samples collected from crime scenes grow in complexity. Laser ablation ICP-MS (LA-ICP-MS) has been shown to provide a high degree of discrimination between samples that originate from different sources. In the first part of this research, two laser ablation ICP-MS systems were compared, one using a nanosecond laser and another a femtosecond laser source for the forensic analysis of glass. The results showed that femtosecond LA-ICP-MS did not provide significant improvements in terms of accuracy, precision and discrimination, however femtosecond LA-ICP-MS did provide lower detection limits. In addition, it was determined that even for femtosecond LA-ICP-MS an internal standard should be utilized to obtain accurate analytical results for glass analyses. In the second part, a method using laser induced breakdown spectroscopy (LIBS) for the forensic analysis of glass was shown to provide excellent discrimination for a glass set consisting of 41 automotive fragments. The discrimination power was compared to two of the leading elemental analysis techniques, µXRF and LA-ICP-MS, and the results were similar; all methods generated >99% discrimination and the pairs found indistinguishable were similar. An extensive data analysis approach for LIBS glass analyses was developed to minimize Type I and II errors en route to a recommendation of 10 ratios to be used for glass comparisons. Finally, a LA-ICP-MS method for the qualitative analysis and discrimination of gel ink sources was developed and tested for a set of ink samples. In the first discrimination study, qualitative analysis was used to obtain 95.6% discrimination for a blind study consisting of 45 black gel ink samples provided by the United States Secret Service. A 0.4% false exclusion (Type I) error rate and a 3.9% false inclusion (Type II) error rate was obtained for this discrimination study. In the second discrimination study, 99% discrimination power was achieved for a black gel ink pen set consisting of 24 self collected samples. The two pairs found to be indistinguishable came from the same source of origin (the same manufacturer and type of pen purchased in different locations). It was also found that gel ink from the same pen, regardless of the age, was indistinguishable as were gel ink pens (four pens) originating from the same pack.
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for µXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for µXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for µXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
In der vorliegenden Arbeit wurde der Nachweis des Isotops Np-237 mit Resonanzionisations-Massenspektrometrie (RIMS) entwickelt und optimiert. Bei RIMS werden Probenatome mehrstufig-resonant mit Laserstrahlung angeregt, ionisiert und anschließend massenspektrometrisch nachgewiesen. Die Bestimmung geeigneter Energiezustände für die Anregung und Ionisation von Np-237 erfolgte durch Resonanzionisationsspektroskopie (RIS), wobei über 300 bisher unbekannte Energieniveaus und autoionisierende Zustände von Np-237 identifiziert wurden. Mit in-source-RIMS wird für das Isotop eine Nachweisgrenze von 9E+5 Atome erreicht. rnrnDie Mobilität von Np in der Umwelt hängt stark von seiner Elementspeziation ab. Für Sicherheitsanalysen potentieller Endlagerstandorte werden daher Methoden benötigt, die Aussagen über die unter verschiedenen Bedingungen vorliegenden Neptuniumspezies ermöglichen. Hierzu wurde eine online-Kopplung aus Kapillarelektrophorese (CE) und ICP-MS (inductively coupled plasma mass spectrometry) genutzt, mit der die Np-Redoxspezies Np(IV) und Np(V) noch bei einer Konzentrationen von 1E-9 mol/L selektiv nachgewiesen werden können. Das Verfahren wurde eingesetzt, um die Wechselwirkung des Elements mit Opalinuston unter verschiedenen Bedingungen zu untersuchen. Dabei konnte gezeigt werden, dass bei Gegenwart von Fe(II) Np(V) zu Np(IV) reduziert wird und dieses am Tongestein sorbiert. Dies führt insgesamt zu einer deutlich erhöhten Sorption des Np am Ton.
Resumo:
Die vorliegende Arbeit wurde im Rahmen des Verbundprojektes „Wechselwirkung und Transport von Actiniden im natürlichen Tongestein unter Berücksichtigung von Huminstoffen und Tonorganika – Wechselwirkung von Neptunium und Plutonium mit natürlichem Tongestein“ durchgeführt. Diese Untersuchungen sollen die thermodynamische Datenbasis für Actiniden erweitern sowie Informationen zur Ableitung von Bewertungskriterien für die Endlagerung radioaktiver Abfälle in Ton als Wirtsgestein, insbesondere über das Rückhaltevermögen von Tongestein gegenüber Radionukliden, liefern. Dabei stand die Anwendung verschiedener Speziationstechniken wie CE-ICP-MS, UV/VIS und die apparative Entwicklung der CE-RIMS im Vordergrund. Es sollte das Verhalten von Plutonium in umweltrelevanten Medien und Konzentrationen, im Ultraspurenbereich, untersucht werden. Unabhängig davon sollten Uranproben aus dem 2. Weltkrieg und Umweltproben des Landesamts für Umwelt und Forsten Rheinland-Pfalz auf ihren Plutoniumgehalt analysiert werden. Dazu wurde zunächst ein neues ICP-MS-Gerät Agilent 7500ce in Betrieb genommen und auf die Verwendung in Kombination mit der Kapillarelektrophorese optimiert. Die erreichte Nachweisgrenze für die vier Oxidationsstufen des Pu beträgt 0,05 ppb des gesamten Plutoniums in Lösung. Mit Hilfe der CE-ICP-MS wurde die Redoxstabilität einer Mischung aus verschiedenen Oxidationszuständen des Plutoniums in Opalinus-Ton-Porenwasser und Vergleichsmedien unter aeroben und anaeroben Bedingungen mit der CE untersucht. Die Untersuchungen zeigen das Pu(III) bis zu 40 min im verwendeten Elektrolytsystem stabil ist und dann oxidiert wird. In Porenwasser wurde als vorherrschende Spezies Pu(V) bestimmt. Die Redoxstabilität von Pu(VI) wurde untersucht, dabei wurde festgestellt, dass sich Pu(VI) bereits durch einfaches Verdünnen reduzieren lässt. Weiterhin wurden die Kd-Werte für die Sorption von Plutonium an Opalinuston unter aeroben und anaeroben Bedingungen für Pu(III) und Pu(IV) im System Porenwasser/Opalinuston von Kd(aerob) Pu(III) ≈ 53 m3/kg, Kd(aerob) Pu(IV) ≈ 14 m3/kg, Kd(anaerob) Pu(III) ≈ 114 m3/kg, Kd(anaerob) Pu(IV) ≈ 178 m3/kg bestimmt. Ein weiterer Schwerpunkt der Arbeit war die Entwicklung, Optimierung und Anwendung der Kopplung CE-RIMS zur Speziation des Plutoniums im Ultraspurenbereich. Dies konnte erfolgreich in mehreren Schritten durchgeführt und an den Proben aus den Batchversuchen zur Kd-Wert Bestimmung angewandt werden. Der Memory-Effekt des an den Kapillarwänden sorbierenden Pu(IV) konnte mit der empfindlichen Kopplung CE-RIMS ebenfalls nachgewiesen werden.
Resumo:
The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds (trimethyltin, dibutyltin, tributyltin, diphenyltin and triphenyltin) in seawater samples. Agilent TC-C18 column was used for the separation, the mobile phase of HPLC was CH3CN : H2O: CH3COOH=65 : 23 : 12 (phi), 0.05% TEA, and pH value was adjusted to 3.0 by diluent ammonia. The flow rate was 0.6 mL . min(-1). Five mixed organotin compounds in a mix standard solution from 100 to 0.5 mu g . L-1 were applied for the method assessment. The experimental results indicate that the correlation coefficient of calibration curves (R-2) for each organotin compound was over 0.998 and the detection limits of the five organotin compounds were lower than 3 ng . L-1. Different mixed organic solvents including dichloromethane or toluene were used for extraction of organotin and the extraction condition of organotin from seawater was optimized. The 100 mL seawater acidized by hydrochloric acid was extracted by 10 mL carbon dichloride (CH2Cl2) with 2% tropolone for 10 min twice. Extracted organic solvents were mixed And blown to one drop by nitrogen with the rate of 1.7 mL . min(-1), then 1 mL acetonitrile was added to the drop for redissolving the organotin compounds. Finally, the mixed redissolution was filtered by 0.22 mu m organic filter membrane before analysis. it was found that the only organotin compound in seawater was triphenyltin (TPHT) and the content was 53.2 ng . L-1. The recoveries test from the standard addition for diphenyltin (DPHT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPHT) were over 80%. However, the recovery for trimethyltin (TMT) was relatively low and the value was 50%. The reason might be attributed to the decomposition or adsorption of those compounds during the extraction procedure. Further study on this subject is in progress.
Resumo:
The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry(HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds in the shellfish samples. Agilent TC-C-18 column was selected, mobile phase of the HPLC was CH3CN:H2O: CH3COOH = 65:23:12 (V/V), 0. 05% TEA, pH = 3.0 at flow rate 0.4 mL/min. Five mixed organotin standards from 100 mu g/L to 0. 5 mu g/L was used for the method evaluation. The experimental results indicate that the linearity (R-2) for each compound was over 0.998. The shellfish samples were treated by supersonic extraction with mobile phase for 30min. Four organotin compounds including dibutyltin (DBT), tributyltin (TBT), diphenyltin (DphT) and triphenyltin (TPhT) in shellfish samples were detected with method mentioned above. It was found that the domain compounds in the samples were tributyltin (TBT) and triphenyltin (TPhT). The recoveries test from the standard addition for trimethyltin (TMT tributyltin (TBT), and triphenyltin (TPhT) were, over 80%. However, the recoveries for diphenyltin (DPhT) and dibutyltin (DBT) were relatively low, 37.3% and 75.2% respectively. The reason might be attributed to the decomposition of those compounds during the extraction procedure. The further study on this subject is under the progress.
Resumo:
An interface of chip-based capillary electrophoresis (CE)-inductively coupled plasma-atomic emission spectrometry (ICP-AES) that is based on cross-flow nebulization has been developed. A polydimethylsiloxane (PDMS) CE-chip with conventional cross channel layout was used. A stainless steel tube was placed orthogonal to the exit of the CE separation channel for cross flow nebulization. A supplementary flow of buffer solution at the channel exit was used to improve nebulization efficiency. Two capillaries were inserted into the CE chip near the inlet of the separation channel for sample and buffer solution injection. Syringe pumps were used to manipulate the flow rate and flow direction of the sample, buffer, and supplementary buffer solution. Peak broadening due to the shape (bulb and tube-shaped) and size of the spray chambers was studied. The smaller tube-shaped spray chamber was used because of smaller peak broadening effect due to aerosol transport. The nebulization and transport efficiency of the CE-ICP interface was approximately 10%. Ba2+ and Mg2+ ions were eluted from the CE-chip within 30 s. Resolution of the Ba2+ and Mg2+ peaks was 0.7 using the chip-based CE-ICP-AES system.