1000 resultados para mapeamento de solo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O trigo é a principal cultura de inverno do estado do Rio Grande do Sul e o cálculo do balanço de água no solo é parte importante de modelos de crescimento, desenvolvimento e rendimento de culturas. O objetivo deste trabalho foi obter melhor estimativa do balanço de água no solo cultivado com trigo, modificando dois modelos de balanço de água nesse solo. Mediu-se o conteúdo de água no solo pelo método gravimétrico durante a estação de cultivo de dois cultivares de trigo em três datas de semeadura, em Santa Maria - RS, e a água disponível para a cultura foi representada pela fração de água no solo disponível para as plantas (FADS). O desempenho das versões originais e modificadas dos modelos de balanço de água no solo de Campbell & Diaz e de Amir & Sinclair foi avaliado pela raiz do quadrado médio do erro (RQME). O modelo de Campbell & Diaz modificado é mais realístico e com maior possibilidade de desempenho satisfatório em regiões de clima distinto daquele em que foi desenvolvido, mas o modelo de Amir & Sinclair modificado estimou melhor a água disponível no solo para a cultura do trigo na região do estudo. A profundidade máxima do sistema radicular de 0,30 m é mais apropriada para a simulação da fração de água disponível no solo, para a unidade de mapeamento de solo São Pedro.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Os modelos digitais de elevação (MDEs) são fontes fundamentais para correlacionar a ocorrência e distribuição de solos com a paisagem pelo mapeamento digital de solos (MDS). A influência dos tipos e das resoluções dos MDEs na capacidade de predição dos modelos preditores de classes de solo ainda é pouco estudada. Neste estudo, foram avaliados e comparados os efeitos de diferentes MDEs na predição de ocorrência de unidades de mapeamento de solo (UM). Foram correlacionados 12 atributos do terreno derivados de diferentes MDEs com a ocorrência de UM. Os MDEs utilizados foram os oriundos dos projetos SRTM v4.1, ASTER GDEM v2, TOPODATA e Brasil em Relevo, e os MDEs gerados a partir de curvas de nível na escala de 1:50.000, com resoluções de 30 e 90 m. Os modelos preditores foram treinados por árvore de decisão (Simple Cart) com dados amostrados em 4.280 pontos aleatórios contendo informações dos solos extraídos de um mapa convencional de solos na escala 1:20.000 e 12 atributos do terreno derivados de seis MDEs com tamanhos de pixel de 30 e 90 m. A validação dos modelos preditores de UM foi realizada com a totalidade dos dados da área. Os atributos do terreno que melhor explicaram a ocorrência das UM foram elevação, declividade, comprimento de fluxo e orientação das vertentes. Os MDEs com tamanho de pixel de 30 m geraram correlações solo-paisagem menos acuradas. Os modelos preditores mais acurados e com maior número de UM estimadas foram os gerados a partir dos MDEs com resolução espacial de 90 m (SRTM v4.1 e CN90), sendo esses os MDEs mais indicados para o MDS, quando predominarem relevos plano e suave ondulado.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a eficiência da suscetibilidade magnética do solo para estimar a capacidade de suporte de áreas à aplicação de vinhaça. Foram coletadas 241 amostras de solo, de uma área de 380 ha, nas quais foram determinados os atributos químicos, os teores de argila e a suscetibilidade magnética do solo. Foram calculadas as doses de vinhaça recomendadas para cada amostra. Os dados foram submetidos à análise estatística descritiva, e foram desenvolvidos modelos de regressão entre a suscetibilidade magnética e os outros atributos avaliados. A análise da dependência espacial dos dados foi feita com uso da geoestatística. Foram construídos mapas de krigagem e variogramas cruzados, para averiguar a correlação espacial entre a suscetibilidade magnética e os atributos estudados. Com base no mapa de recomendação de vinhaça, nas classes de solo e nos mapas de krigagem, foram calculadas as doses médias de vinhaça e as capacidades de suporte médias, ponderadas pela área. A suscetibilidade magnética apresenta correlação espacial linear significativa com as doses de vinhaça recomendadas e com a capacidade de suporte do solo à aplicação desse efluente, e pode ser utilizada como componente da função de pedotransferência, na quantificação indireta da capacidade de suporte.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O levantamento e a análise da espacialização dos atributos do solo através de ferramentas de geoestatística são fundamentais para que cada hectare de terra seja cultivado segundo as suas reais aptidões. As imagens de radar de abertura sintética (SAR) têm um grande potencial para a estimação de umidade do solo e, desta forma, estes sensores podem auxiliar no mapeamento de propriedades físicas e físico-hídricas dos solos. O objetivo geral deste estudo foi avaliar o potencial de utilização de imagens de radar (micro-ondas) ALOS/PALSAR na identificação de solos em uma área da Formação Botucatu, dominada por solos de textura arenosa e média no município de Mineiros - GO. A área tem aproximadamente 946 ha, com o relevo da região variando de plano a suave ondulado e geologia da área é composta basicamente, por Arenitos da Formação Botucatu. No presente estudo foram amostrados 84 pontos para calibração e 25 pontos para validação, coletados nas profundidades de 0-20 cm e 60-80 cm. As amostras de solo analisadas para a determinação de areia, silte, argila, capacidade de campo (CC), ponto de murcha permanente (PMP) e água total disponível (AD). Para o desenvolvimento do trabalho foram adquiridas imagens de cinco datas e diferentes polarizações, totalizando 14 imagens, que foram processadas para a correção geométrica e correção radiométrica, utilizando o MDE. Também foram gerados covariáveis dos atributos do terreno: elevação (ELEV), declividade (DECLIV), posição relativa da declividade (PR-DECL), distância vertical do canal de drenagem (DVCD), fator-ls (FATOR-LS) e distância euclidiana (D-EUCL). A predição dos atributos do solo foi realizada utilizando os métodos Random Forest (RF) e Random Forest Krigagem (RFK), tendo como covariáveis preditoras as imagens de radar e os atributos do terreno. O processamento das imagens do radar ALOS/PALSAR possibilitou as correções geométrica e radiométrica, transformando os dados em unidades de coeficiente de retroespalhamento (?º) corrigidos pelo modelo digital de elevação (MDE). As imagens adquiridas representaram de forma ampla as variações de ?º ocorridos em diferentes datas. Os solos da área de estudo são predominantemente arenosos, com a maioria dos pontos amostrados classificados como NEOSSOLOS QUARTZARÊNICOS, seguidos dos LATOSSOLOS. Os modelos RF empregados para a predição dos atributos físicos e físico-hídricos dos solos proporcionaram a análise da contribuição das covariáveis preditoras. Os atributos do terreno que exerceram maior influência na predição dos atributos estudados estão relacionados à elevação. As imagens de 03/05/2009 (HH1, VV1, HV1 e VH1) e 26/09/2010 (HH3 e HV3), obtidas em períodos mais secos, tiveram melhores correlações com os atributos do solo. As análises dos semivariogramas dos resíduos da predição dos modelos RF demonstraram maior dependência espacial na camada de 60 a 80 cm. A abordagem da Krigagem somada ao modelo RF contribuíram para a melhoria da predição dos atributos areia, argila, CC e PMP. O uso de imagens de radar ALOS/PALSAR e atributos do terreno como covariáveis em modelos RFK mostrou potencial para estimar os atributos físicos (areia e argila) e físico-hídricos (CC e PMP), que podem auxiliar no mapeamento de solos associados aos materiais de origem da Formação Botucatu.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O conceito de superfície geomórfica permite uma interligação entre os diferentes ramos da ciência do solo, tais como geologia, geomorfologia e pedologia. Esta associação favorece a compreensão da distribuição espacial dos solos na paisagem, e torna possível compreender o comportamento dos atributos do solo, que estão principalmente relacionadas com a estratigrafia e formas do relevo. Assim, este estudo visa à aplicação da estatística multivariada para categorizar superfícies geomórficas em uma litossequência arenito-basalto, de modo a fornecer uma base para a avaliação do solo em áreas afins. A área de estudo está localizada no município de Pereira Barreto, São Paulo, Brasil. A área escolhida possui 530 hectares, onde foram localizadas e mapeadas três superfícies geomórficas (I, II e III). Na área, 134 amostras foram coletadas nas profundidades de 0,0-0,2 m e 0,8-1,0 m, foram determinados os conteúdos de areia, silte e argila, pH em CaCl2, conteúdo de MO, P, Ca, Mg, K, Al e H+Al. Com base nos resultados, foram realizadas a análise univariada e multivariada de variância, clusters e principal componente, a fim de comparar as três superfícies geomórficas. A análise estatística univariada dos atributos do solo não foi eficiente na identificação das três superfícies geomórficas. Utilizando-se os atributos físicos e químicos do solo, as técnicas estatísticas multivariada permitiram à separação dos três grupos de corpos naturais do solo que foram equivalentes as três superfícies geomórficas mapeadas. Estes resultados são interessantes, pois demonstram a viabilidade da utilização de classificação numérica das superfícies geomórficas para ajudar no mapeamento de solo.