24 resultados para mannosidase
Resumo:
Protein glycosylation pathways, commonly found in fungal pathogens, offer an attractive new area of study for the discovery of antifungal targets. In particular, these post-translational modifications are required for virulence and proper cell wall assembly in Candida albicans, an opportunistic human pathogen. The C. albicans MNS1 gene is predicted to encode a member of the glycosyl hydrolase family 47, with 1,2-mannosidase activity. In order to characterise its activity, we first cloned the C. albicans MNS1 gene into Escherichia coli, then expressed and purified the enzyme. The recombinant Mns1 was capable of converting a Man9GlcNAc2 N-glycan core into Man8GlcNAc2 isomer B, but failed to process a Man5GlcNAc2-Asn N-oligosaccharide. These properties are similar to those displayed by Mns1 purified from C. albicansmembranes and strongly suggest that the enzyme is an ±1,2-mannosidase that is localised to the endoplasmic reticulum and involved in the processing of N-linked mannans. Polyclonal antibodies specifically raised against recombinant Mns1 also immunoreacted with the soluble ±1,2-mannosidases E-I and E-II, indicating that Mns1 could share structural similarities with both soluble enzymes. Due to the high degree of similarity between the members of family 47, it is conceivable that these antibodies may recognise ±1,2-mannosidases in other biological systems as well.
Resumo:
Alpha 1,2-mannosidases from glycosyl hydrolase family 47 participate in N-glycan biosynthesis. In filamentous fungi and mammalian cells, α1,2-mannosidases are present in the endoplasmic reticulum (ER) and Golgi complex and are required to generate complex N-glycans. However, lower eukaryotes such Saccharomyces cerevisiae contain only one α1,2-mannosidase in the lumen of the ER and synthesise high-mannose N-glycans. Little is known about the N-glycan structure and the enzyme machinery involved in the synthesis of these oligosaccharides in the dimorphic fungus Sporothrix schenckii. Here, a membrane-bound α-mannosidase from S. schenckii was solubilised using a high-temperature procedure and purified by conventional methods of protein isolation. Analytical zymograms revealed a polypeptide of 75 kDa to be responsible for enzyme activity and this purified protein was recognised by anti-α1,2-mannosidase antibodies. The enzyme hydrolysed Man9GlcNAc2 into Man8GlcNAc2 isomer B and was inhibited preferentially by 1-deoxymannojirimycin. This α1,2-mannosidase was localised in the ER, with the catalytic domain within the lumen of this compartment. These properties are consistent with an ER-localised α1,2-mannosidase of glycosyl hydrolase family 47. Our results also suggested that in contrast to other filamentous fungi, S. schenckii lacks Golgi α1,2-mannosidases and therefore, the processing of N-glycans by α1,2-mannosidases is similar to that present in lower eukaryotes.
Resumo:
Changes in the glycosylation pattern of cellular glycoproteins constitute a hallmark in human cancer and influence tumor progression, suggesting that inhibitors of selected glycosidases may control cancer progression. Following the studies on swainsonine, a natural inhibitor of Golgi alpha-mannosidase II, which highlighted the inhibition of cellular mannosidases as a potential innovative approach for the treatment of cancer, several dihydroxylated pyrrolidines and analogues were developed as new potent inhibitors of alpha-mannosidases II able to induce antiproliferative effects in human cancer cells.
Resumo:
Novel alpha-mannosidase inhibitors of the type (2R,3R,4S)-2-({[(1R)-2-hydroxy-1-arylethyl]amino}methyl)pyrrolidine-3,4-diol have been prepared and assayed for their anticancer activities. Compound 30 with the aryl group=4-trifluoromethylbiphenyl inhibits the proliferation of primary cells and cell lines of different origins, irrespective of Bcl-2 expression levels, inducing a G2/Mcell cycle arrest and by modification of genes involved in cell cycle progression and survival.
Resumo:
A novel 1,6-alpha-D-mannosidase was produced by Aspergillus phoenicis grown on a commercial manno-oligosaccharide preparation in liquid culture. The enzyme hydrolysed only alpha-D-Manp-(1 --> 6)-D-Manp and did not act on alpha-D-Manp-(1 --> 2)-D-Manp, or alpha-D-Manp-(1 --> 3)-D-Manp. The 1,6-alpha-D-mannosidase was used for synthesis of manno-oligosaccharides by reverse hydrolysis reaction. The highest yields, expressed as percentages (w/w) of total sugar, were similar to21% mannobiose and similar to5% mannotriose, and they were obtained with 45% (w/w) initial mannose concentration at pH 4.5 after 12 days incubation at 55 degreesC. The disaccharide and trisaccharide products were separated and their structures determined by methylation analysis. Only 1-6 linkages were found in both of them. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Golgi alpha-mannosidase II (alpha-MII) is an enzyme involved in the processing of N-linked glycans. Using a previously isolated murine cDNA clone as a probe, we have isolated cDNA clones encompassing the human alpha-MII cDNA open reading frame and initiated isolation of human genomic clones. During the isolation of genomic clones, genes related to that encoding alpha-MII were isolated. One such gene was found to encode an isozyme, designated alpha-MIIx. A 5-kb cDNA clone encoding alpha-MIIx was then isolated from a human melanoma cDNA library. However, comparison between alpha-MIIx and alpha-MII cDNAs suggested that the cloned cDNA encodes a truncated polypeptide with 796 amino acid residues, while alpha-MII consists of 1144 amino acid residues. To reevaluate the sequence of alpha-MIIx cDNA, polymerase chain reaction (PCR) was performed with lymphocyte mRNAs. Comparison of the sequence of PCR products with the alpha-MIIx genomic sequence revealed that alternative splicing of the alpha-MIIx transcript can result in an additional transcript encoding a 1139-amino acid polypeptide. Northern analysis showed transcription of alpha-MIIx in various tissues, suggesting that the alpha-MIIx gene is a housekeeping gene. COS cells transfected with alpha-MIIx cDNA containing the full-length open reading frame showed an increase of alpha-mannosidase activity. The alpha-MIIx gene was mapped to human chromosome 15q25, whereas the alpha-MII gene was mapped to 5q21-22.
Resumo:
Ipomoea cameo Jacq. ssp. fistulosa (Mart. Ex Choisy; Convolvulaceae; I. cameo) possesses a toxic component: an indolizidine alkaloid swainsonine (SW) that has immunomodulatory effects due to its inhibition of glycoprotein metabolism. It is also known that SW is excreted into both the amniotic fluid and milk of female rats exposed to I. cameo. Thus, the aim of this study was to determine whether SW exposure, either in utero or from the milk of dams treated with I. cornea, modulates offspring immune function into adulthood. In addition, adult (70 days old) and juvenile rats (21 days old) were exposed to I. cameo in order to evaluate several other immune parameters: lymphoid organs relative weight and cellularity, humoral and cellular immune responses. Offspring exposed to I. cornea during lactation developed rheumatoid arthritis (RA) in adulthood after an immunogenic challenge. In addition, both adult and juvenile rats exposed to I. cameo showed discrepancies in several immune parameters, but did not exhibit any decrease in humoral immune response, which was enhanced at both ages. These findings indicate that SW modulates immune function in adult rats exposed to SW during lactation and in juvenile and adult rats exposed to SW as juveniles and adults, respectively.
Resumo:
Certain glycosidase inhibitors possess potent antiviral, antitumour and antidiabetic properties. Glyconic acid lactones, the earliest glycosidase inhibitors identified, have planar anomeric carbons that mimic the transition state of glycoside hydrolysis. Other classes include lactams, glycals, epoxides, halides and sulfonium ions, the latter based on the natural product salacinol from an antidiabetic herb.
Resumo:
Neutral alpha-mannosidase and lysosomal MAN2B1 alpha-mannosidase belong to glycoside hydrolase family 38, which contains essential enzymes required for the modification and catabolism of asparagine-linked glycans on proteins. MAN2B1 catalyses lysosomal glycan degradation, while neutral α-mannosidase is most likely involved in the catabolism of cytosolic free oligosaccharides. These mannose containing saccharides are generated during glycosylation or released from misfolded glycoproteins, which are detected by quality control in the endoplasmic reticulum. To characterise the biological function of human neutral α-mannosidase, I cloned the alpha-mannosidase cDNA and recombinantly expressed the enzyme. The purified enzyme trimmed the putative natural substrate Man9GlcNAc to Man5GlcNAc, whereas the reducing end GlcNAc2 limited trimming to Man8GlcNAc2. Neutral α-mannosidase showed highest enzyme activity at neutral pH and was activated by the cations Fe2+, Co2+ and Mn2+, Cu2+ in turn had a strong inhibitory effect on alpha-mannosidase activity. Analysis of its intracellular localisation revealed that neutral alpha-mannosidase is cytosolic and colocalises with proteasomes. Further work showed that the overexpression of neutral alpha-mannosidase affected the cytosolic free oligosaccharide content and led to enhanced endoplasmic reticulum associated degradation and underglycosylation of secreted proteins. The second part of the study focused on MAN2B1 and the inherited lysosomal storage disorder α-mannosidosis. In this disorder, deficient MAN2B1 activity is associated with mutations in the MAN2B1 gene. The thesis reports the molecular consequences of 35 alpha-mannosidosis associated mutations, including 29 novel missense mutations. According to experimental analyses, the mutations fall into four groups: Mutations, which prevent transport to lysosomes are accompanied with a lack of proteolytic processing of the enzyme (groups 1 and 3). Although the rest of the mutations (groups 2 and 4) allow transport to lysosomes, the mutated proteins are less efficiently processed to their mature form than is wild type MAN2B1. Analysis of the effect of the mutations on the model structure of human lysosomal alpha-mannosidase provides insights on their structural consequences. Mutations, which affect amino acids important for folding (prolines, glycines, cysteines) or domain interface interactions (arginines), arrest the enzyme in the endoplasmic reticulum. Surface mutations and changes, which do not drastically alter residue volume, are tolerated better. Descriptions of the mutations and clinical data are compiled in an α-mannosidosis database, which will be available for the scientific community. This thesis provides a detailed insight into two ubiquitous human alpha-mannosidases. It demonstrates that neutral alpha-mannosidase is involved in the degradation of cytosolic oligosaccharides and suggests that the regulation of this α-mannosidase is important for maintaining the cellular homeostasis of N-glycosylation and glycan degradation. The study on alpha-mannosidosis associated mutations identifies multiple mechanisms for how these mutations are detrimental for MAN2B1 activity. The α-mannosidosis database will benefit both clinicians and scientific research on lysosomal alpha‑mannosidosis.
Resumo:
Ipomoea carnea subsp. fistulosa, aguapei or mandiyura, is responsible for lysosomal storage in goats. The shrub contains several alkaloids, mainly swansonine which inhibits lysosomal α-mannosidase and Golgi mannosidase II. Poisoning occurs by inhibition of these hydrolases. There is neuronal vacuolation, endocrine dysfunction, cardiovascular and gastrointestinal injury, and immune disorders. Clinical signs and pathology of the experimental poisoning of goats by Ipomoea carnea in Argentina are here described. Five goats received fresh leaves and stems of Ipomoea. At the beginning, the goats did not consume the plant, but later, it was preferred over any other forage. High dose induced rapid intoxication, whereas with low doses, the course of the toxicosis was more protracted. The goats were euthanized when they were recumbent. Cerebrum, cerebellum, medulla oblongata, pons and colliculi, were routinely processed for histology. In nine days, the following clinical signs developed: abnormal fascies, dilated nostrils and abnormal postures of the head, cephalic tremors and nystagmus, difficulty in standing. Subsequently, the goats had a tendency to fall, always to the left, with spastic convulsions. There was lack in coordination of voluntary movements due to Purkinje and deep nuclei neurons damage. The cochlear reflex originated hyperreflexia, abnormal posture, head movements and tremors. The withdrawal reflex produced flexor muscles hypersensitivity at the four legs, later depression and stupor. Abnormal responses to sounds were related to collicular lesions. Thalamic damage altered the withdrawal reflex, showing incomplete reaction. The observed cervical hair bristling was attributed to a thalamic regulated nociceptive response. Depression may be associated with agonists of lysergic acid contained in Ipomoea. These clinical signs were correlated with lesions in different parts of the CNS.
Resumo:
"Funktionelle Analyse der LC-FACS in Dictyostelium discoideum" Das Dictyostelium discoideum Gen fcsA kodiert für ein 75 kDa großes Protein. Es kann durch Homologieanyalysen der Amino-säuresequenz zu den "long-chain fatty acyl-CoA"-Synthetasen ge-rechnet werden, die lang-kettige Fettsäuren durch die kovalente Bindung von Coenzym A akti-vie-ren und damit für diverse Reak-tionen in Stoffwechsel und Molekül-Synthese der Zelle verfügbar machen. Die hier untersuchte D. discoideum LC-FACS lokalisiert als peripher assoziiertes Protein an der cytosolischen Seite der Membran von Endo-somen und kleiner Vesikel. Bereits kurz nach der Bildung in der frühen sauren Phase kann die Lokalisation der LC-FACS auf Endosomen ge-zeigt werden. Sie dissoziiert im Laufe ihrer Neutra-li-sierung und kann auf späten Endosomen, die vor ihrer Exocytose stehen nicht mehr nach-gewiesen werden. Ein Teil der kleinen die in der gesamte Zelle verteilten kleinen Vesikel zeigt eine Kolokalisation mit lysosomalen Enzymen. Trotz des intrazellulären Verteilungs-mus-ters, das eine Beteiligung dieses Pro-teins an der Endocytose nahe-legt, konnte kein signifikanter Rückgang der Pino- und Phagocytose-Rate in LC-FACS Nullmutanten beobachtet werden. Der endo-cy-to-ti-sche Transit ist in diesen Zellen etwas verlängert, außerdem zeigen die Endosomen einen deutlich erhöhten pH-Wert, was zu einer weniger effektiven Prozessierung eines lysosomalen Enzyms führt (a-Mannosidase). Die Funktion der LC-FACS ist die Aufnahme von langkettigen Fettsäuren aus dem Lumen der Endosomen.
Resumo:
Four unsaturated aminopyranosides have been prepared as possible transition-state mimics targeted towards carbohydrate processing enzymes. The conformations of the protonated aminosugars have been investigated by molecular modelling and their ability to inhibit alpha- and beta-glucosidases and an a-mannosidase have been probed. Two targets proved moderate inhibitors of alpha-glucosidases from Brewer's yeast and Bacillus stearothennophilus.
Resumo:
Possible evidence is presented for Maillard glycation of enzymes during oligosaccharide synthesis by reverse hydrolysis. In 70% (w/v) mannose solutions, 1,2-alpha-mannosidase from Penicillium citrinum lost 40% and alpha-mannosidase from almonds lost 60% activity at 55 degreesC over 2 weeks. Oligosaccharide yields were 15 and 45% respectively. Higher molecular weight glycation adducts were formed in a time-dependent manner as seen by MALDI-TOF. Inhibitors of the Maillard. reaction were able to partially alleviate these effects resulting in reduced loss of enzyme activity and oligosaccharide yield increases of 27-53% relative to the control. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Recombinant Penicillium citrinum alpha-1,2-mannosidase, expressed in Aspergillus oryzae, was employed to carry out regioselective synthesis of alpha-D-mannopyranosyl-(1-->2)-D-mannose. Yields (w/w) of 16.68% disaccharide, 3.07% trisaccharide and 0.48% tetrasaccharide were obtained, with alpha1-->2 linkages present at 98.5% of the total linkages formed. Non-specific alpha-mannosidase from almond was highly efficient in reverse hydrolysis and oligosaccharide yields of 45-50% were achieved. The products of the almond mannosidase were a mixture of disaccharides (30.75%, w/w), trisaccharides (12.26%, w/w) and tetrasaccharides (1.89%, w/w) with 1-->2, 1-->3 and 1-->6 isomers. alpha-1,2-linkage specific mannosidase from P. citrinum and alpha-1,6-linkage-specific mannosidase from Aspergillus phoenicis were used in combination to hydrolyse the respective linkages from the mixture of isomers, resulting in alpha-D-mannopyranosyl-(1-->3)-D-mannose in 86.4% purity. The synthesised oligosaccharides can potentially inhibit the adhesion of pathogens by acting as 'decoys' of receptors of type-1 fimbriae carried by enterobacteria.
Resumo:
1,6-alpha-D-Mannosidase from Aspergillits phoenicis was purified by anion-exchange chromatography, chromatofocussing and size-exclusion chromatography. The apparent molecular weight was 74 kDa by SDS-PAGE and 81 kDa by native-PAGE. The isoelectric point was 4.6. 1,6-alpha-D-Mannosidase had a temperature optimum of 60 degrees C, a pH optimum of 4.0-4.5. a K-m of 14 mM with alpha-D-Manp-(1 -> 6)-D-Manp as substrate. It was strongly inhibited by Mn2+ and did not need Ca2+ or any other metal cofactor of those tested. The enzyme cleaves specifically (1 -> 6)-linked mannobiose and has no activity towards any other linkages, p-nitrophenyl-alpha-D-mannopyranoside or baker's yeast mannan. 1,3(1,6)-alpha-D-Mannosidase from A. phoenicis was purified by anion-exchange chromatography, chromatofocus sing and size-exclusion chromatography. The apparent molecular weight was 97 kDa by SDS-PAGE and 110 kDa by native-PAGE. The 1,3(1,6)-alpha-D-mannosidase enzyme existed as two charge isomers or isoforms. The isoelectric points of these were 4.3 and 4.8 by isoelectric focussing. It cleaves alpha-D-Manp-(1 -> 3)-D-Manp 10 times faster than alpha-D-Manp-(1 -> 6)-D-Manp, has very low activity towards p-nitrophenyl-alpha-D-mannopyranoside and baker's yeast mannan, and no activity towards alpha-D-Manp-(1 -> 2)-D-Manp. The activity towards (1 -> 3)-linked mannobiose is strongly activated by 1 mM Ca2+ and inhibited by 10 mM EDTA, while (1 -> 6)-activity is unaffected, indicating that the two activities may be associated with different polypeptides. It is also possible that one polypeptide may have two active sites catalysing distinct activities. (c) 2005 Elsevier Ltd. All rights reserved.