992 resultados para mammary gene expression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc deficiency, causing impaired growth and development, may have a nutritional or genetic basis. We investigated two cases of inherited zinc deficiency found in breast-fed neonates, caused by low levels of zinc in the maternal milk. This condition is different from acrodermatitis enteropathica but has similarities to the "lethal milk" mouse, where low levels of zinc in the milk of lactating dams leads to zinc deficiency in pups. The mouse disorder has been attributed to a defect in the ZnT4 gene. Little is known about the expression of the human orthologue, hZnT4 (Slc30A4). Sequence analysis of cDNA, real-time PCR and Western blot analysis of hZnT4, carried out on control cells and cells from unrelated mothers of two infants with zinc deficiency, showed no differences. The hZnT4 gene was highly expressed in mouthwash buccal cells compared with lymphoblasts and fibroblasts. The hZnT4 protein did not co-localise with intracellular free zinc pools, suggesting that hZnT4 is not involved in transport of zinc into vesicles destined for secretion into milk. This observation, combined with phenotypic differences between the "lethal milk" mouse and the human disorder, suggests that the "lethal milk" mouse is not the corresponding model for the human zinc deficiency condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few models are in place for analysis of extreme lactation patterns such as that of the fur seals which are capable of extended down regulation of milk production in the absence of involution. During a 10–12 month lactation period, female fur seals suckle pups on shore for 2–3 days, and then undertake long foraging trips at sea for up to 28 days, resulting in the longest intersuckling bouts recorded. During this time the mammary gland down regulates milk production. We have induced Cape fur seal (Arctocephalus pusillus pusillus) mammary cells in vitro to form mammospheres up to 900 μm in diameter, larger than any of their mammalian counterparts. Mammosphere lumens were shown to form via apoptosis and cells comprising the cellular boundary stained vimentin positive. The Cape fur seal GAPDH gene was cloned and used in RT-PCR as a normalization tool to examine comparative expression of milk protein genes (αS2-casein, β-lactoglobulin and lysozyme C) which were prolactin responsive. Cape fur seal mammary cells were found to be unique; they did not require Matrigel for rapid mammosphere formation and instead deposited their own matrix within 2 days of culture. When grown on Matrigel, cells exhibited branching/stellate morphogenesis highlighting the species-specific nature of cell–matrix interactions during morphological differentiation. Matrix produced in vitro by cells did not support formation of human breast cancer cell line, PMC42 mammospheres. This novel model system will help define the molecular pathways controlling the regulation of milk protein expression and species specific requirements of the extracellular matrix in the cape fur seal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the effects of dietary energy and recombinant bovine somatotropin (bST) injection to identify genes that might control mammogenesis. Total RNA was extracted from the parenchymal tissue of 32 heifers randomly assigned to one of four treatments: two diets (a standard diet and a high energy, high protein diet), each with or without bST. To perform microarray experiments, RNA samples were pooled (2 animals/pool) before reverse transcription and labeling with Cy3 or Cy5. A 4-node loop design was used to examine the differential gene expression among treatments using a bovine-specific cDNA micro array (National Bovine Functional Genomics Consortium Library, NBFGC) containing 18,263 unique expressed sequence tags (EST). Significance levels of differential gene expression among treatments were assessed using a mixed model approach. Injection of bST altered the expression of 12 % of the genes on NBFGC slide related to tissue development, whereas 6% were altered by diet. Administration of bST increases the expression of genes positively related to cell proliferation and mammary parenchyma to a greater extent than a high energy diet. © 2013 Sociedade Brasileira de Zootecnia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HER-2-positive breast cancers frequently sustain elevated AKT/mTOR signaling, which has been associated with resistance to doxorubicin treatment. Here, we investigated whether rapamycin, an mTOR inhibitor, increased the sensitivity to doxorubicin therapy in two HER-2-overexpressing cell lines: C5.2, which was derived from the parental HB4a by transfection with HER-2 and SKBR3, which exhibits HER-2 amplification. The epithelial mammary cell line HB4a was also analyzed. The combined treatment using 20 nmol/L of rapamycin and 30 nmol/L of doxorubicin arrested HB4a and C5.2 cells in S to G(2)-M, whereas SKBR3 cells showed an increase in the G(0)-G(1) phase. Rapamycin increased the sensitivity to doxorubicin in HER-2-overexpressing cells by approximately 2-fold, suggesting that the combination displayed a more effective antiproliferative action. Gene expression profiling showed that these results might reflect alterations in genes involved in canonical pathways related to purine metabolism, oxidative phosphorylation, protein ubiquitination, and mitochondrial dysfunction. A set of 122 genes modulated by the combined treatment and specifically related to HER-2 overexpression was determined by finding genes commonly regulated in both C5.2 and SKBR3 that were not affected in HB4a cells. Network analysis of this particular set showed a smaller subgroup of genes in which coexpression pattern in HB4a cells was disrupted in C5.2 and SKBR3. Altogether, our data showed a subset of genes that might be more robust than individual markers in predicting the response of HER-2-overexpressing breast cancers to doxorubicin and rapamycin combination. Mol Cancer Ther; 11(2); 464-74. (C) 2011 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer (BC) is the most common malignancy of women in the developed world. To better understand its pathogenesis, knowledge of normal breast development is crucial, as BC is the result of disregulation of physiologic processes. The aim of this study was to investigate the impact of reproductive life stages on the transcriptional profile of the mammary gland in a primate model. Comparative transcriptomic analyses were carried out using breast tissues from 28 female cynomolgus macaques (Macaca fascicularis) at the following life stages: prepubertal (n = 5), adolescent (n = 4), adult luteal (n = 5), pregnant (n = 6), lactating (n = 3), and postmenopausal (n = 5). Mammary gland RNA was hybridized to Affymetrix GeneChip(®) Rhesus Macaque Genome Arrays. Differential gene expression was analyzed using ANOVA and cluster analysis. Hierarchical cluster analysis revealed distinct separation of life stage groups. More than 2,225 differentially expressed mRNAs were identified. Gene families or pathways that changed across life stages included those related to estrogen and androgen (ESR1, PGR, TFF1, GREB1, AR, 17HSDB2, 17HSDB7, STS, HSD11B1, AKR1C4), prolactin (PRLR, ELF5, STAT5, CSN1S1), insulin-like growth factor signaling (IGF1, IGFBP1, IGFBP5), extracellular matrix (POSTN, TGFB1, COL5A2, COL12A1, FOXC1, LAMC1, PDGFRA, TGFB2), and differentiation (CD24, CD29, CD44, CD61, ALDH1, BRCA1, FOXA1, POSTN, DICER1, LIG4, KLF4, NOTCH2, RIF1, BMPR1A, TGFB2). Pregnancy and lactation displayed distinct patterns of gene expression. ESR1 and IGF1 were significantly higher in the adolescent compared to the adult animals, whereas differentiation pathways were overrepresented in adult animals and pregnancy-associated life stages. Few individual genes were distinctly different in postmenopausal animals. Our data demonstrate characteristic patterns of gene expression during breast development. Several of the pathways activated during pubertal development have been implicated in cancer development and metastasis, supporting the idea that other developmental markers may have application as biomarkers for BC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although prolactin and interleukin 2 (IL-2) can elicit distinct physiological responses, we have found that their signal pathways share a common signal transducer and activator of transcription, STAT5. STAT5 was originally identified as a mammary gland factor induced by prolactin in lactating breast cells. Here we demonstrate that STAT5 is activated after IL-2 stimulation of two responsive lymphocyte cell lines, Nb2 and YT. Activation of STAT5 is measured both by IL-2-induced tyrosine phosphorylation and by IL-2-induced DNA binding. The STAT5 DNA recognition site is the same as the interferon gamma-activated site (GAS) in the interferon regulatory factor 1 gene. We demonstrate that the GAS element is necessary and sufficient for transcriptional induction by both IL-2 and prolactin in T lymphocytes. These results indicate that the role of STAT5 in the regulation of gene expression is not restricted to mammary cells or to prolactin, but is an integral part of the signal pathway of a critical immunomodulatory cytokine, IL-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effects of food restriction (FR) and substitution of fish oil (FO; omega 3) for corn oil (CO; omega 6) on breast tumor incidence and survival in mouse mammary tumor virus/v-Ha-ras transgenic (Onco) mice. The diets were as follows: group 1, 5% (wt/wt) CO fed ad libitum (AL); group 2, 5% CO, restricted calories (40% fewer calories than AL; FR); group 3, 20% CO fed AL; and group 4, 20% FO fed AL. After 3 years, 40% of FR Onco (group 2) mice were alive, whereas there were no survivors in the other three groups. Similarly, tumor incidence was reduced to 27% (5 out of 18) in FR animals (group 2), whereas it was 83% (11 out of 13) in group 1 mice, 89% (16 out of 18) in group 3 mice, and 71% (10 out of 14) in group 4 mice. These protective effects of FR on survival and tumor incidence were paralleled by higher expression of the tumor suppressor gene p53 (wild type) and free-radical scavenging enzymes (catalase and superoxide dismutase) in breast tumors. Immunoblotting showed less ras gene product, p21, and increased p53 levels in the tumors of FR mice. In addition, FR decreased RNA levels of c-erbB-2, interleukin 6, and the transgene v-Ha-ras in tumors. In contrast, analysis of hepatic mRNA from tumor-bearing FR mice revealed higher expression of catalase, glutathione peroxidase, and superoxide dismutase. Survival and tumor incidence were not influenced significantly by dietary supplementation with FO in place of CO. Taken together, our studies suggest that moderate restriction of energy intake significantly inhibited the development of mammary tumors and altered expression of cytokines, oncogenes, and free-radical scavenging enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As previously observed for FK506, we report here that cyclosporin A (CsA) treatment of mouse fibroblast cells stably transfected with the mouse mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter plasmid (LMCAT cells) results in potentiation of dexamethasone (Dex)-induced CAT gene expression. Potentiation by CsA is observed in cells treated with 10-100 nM Dex but not in cells treated with 1 microM Dex, a concentration of hormone which results in maximum CAT activity. At 10 nM Dex, 1-5 microM CsA provokes an approximately 50-fold increase in CAT gene transcription, compared with transcription induced by Dex alone. No induction of CAT gene expression is observed in cells treated with CsA or FK506 in the absence of Dex. The antisteroid RU 486 abolishes effects obtained in the presence of Dex. Using a series of CsA, as well as FK506, analogs, including some devoid of calcineurin phosphatase inhibition activity, we conclude that the potentiation effects of these drugs on Dex-induced CAT gene expression in LMCAT cells do not occur through a calcineurin-mediated pathway. Western-blotting experiments following immunoprecipitation of glucocorticosteroid receptor (GR) complexes resulted in coprecipitation of GR, heat shock protein hsp90 and two immunophilins: the FK506-binding protein FKBP59 and the CsA-binding protein cyclophilin 40 (CYP40). Two separate immunophilin-hsp90 complexes are present in LMCAT cells: one containing CYP40-hsp90, the other FKBP59-hsp90. Thus, both FKBP59 and CYP40 can be classified as hsp-binding immunophilins, and their possible involvement as targets of immunosuppressants potentiating the GR-mediated transcriptional activity is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA sequencing and gene expression data related to lactation (mammary gland, milk and their sub compartments) obtained in a number of species (buffalo, mice, human, seal, wallaby, platypus).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stephen utilised the unique lactation strategy of the tammar wallaby to identify factors within the mammary gland that determine the composition of milk and how the milk composition changes throughout lactation in order to provide immunity both to the nursing mammary gland and the suckling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step toward understanding why some women display poor lactation outcomes. Here, we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from five time points (24 h prepartum during the colostrum period, midlactation, two involutions, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (e.g., CEL, OLAH, FOLR1, BTN1A1, and ARG2), while milk cells collected during involution showed a significant downregulation of milk synthesis genes and activation of involution associated genes (e.g., STAT3, NF-kB, IRF5, and IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, while maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.