152 resultados para maltose


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SecB, a soluble cytosolic chaperone component of the Secexport pathway, binds to newly synthesized precursor proteins and prevents their premature aggregation and folding and subsequently targets them to the translocation machinery on the membrane. PreMBP, the precursor form of maltose binding protein, has a 26-residue signal sequence attached to the N-terminus of MBP and is a physiological substrate of SecB. We examine the effect of macromolecular crowding and SecB on the stability and refolding of denatured preMBP and MBP. PreMBP was less stable than MBP (ΔTm =7( 0.5 K) in both crowded and uncrowded solutions. Crowding did not cause any substantial changes in the thermal stability ofMBP(ΔTm=1(0.4 K) or preMBP (ΔTm=0(0.6 K), as observed in spectroscopically monitored thermal unfolding experiments. However, both MBP and preMBP were prone to aggregation while refolding under crowded conditions. In contrast to MBP aggregates, which were amorphous, preMBP aggregates form amyloid fibrils.Under uncrowded conditions, a molar excess of SecB was able to completely prevent aggregation and promote disaggregation of preformed aggregates of MBP. When a complex of the denatured protein and SecB was preformed, SecB could completely prevent aggregation and promote folding of MBP and preMBP even in crowded solution. Thus, in addition to maintaining substrates in an unfolded, export-competent conformation, SecB also suppresses the aggregation of its substrates in the crowded intracellular environment. SecB is also able to promote passive disaggregation of macroscopic aggregates of MBP in the absence of an energy source such as ATP or additional cofactors. These experiments also demonstrate that signal peptide can reatly influence protein stability and aggregation propensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The folding and stability of maltose binding protein (MBP) have been investigated as a function of pH and temperature by intrinsic tryptophan fluorescence, far- and near-UV circular dichroism, and high-sensitivity differential scanning calorimetric measurements. MBP is a monomeric, two-domain protein containing 370 amino acids. The protein is stable in the pH range of 4-10.5 at 25 degrees C. The protein exhibits reversible, two-state, thermal and guanidine hydrochloride-mediated denaturation at neutral pH. The thermostability of MBP is maximal at pH 6, with a Tm of 64.9 degrees C and a deltaHm of 259.7 kcal mol(-1). The linear dependence of deltaHm on Tm was used to estimate a value of deltaCp of 7.9 kcal mol(-1) K(-1) or 21.3 cal (mol of residue)(-1) K(-1). These values are higher than the corresponding deltaCp's for most globular proteins studied to date. However, the extrapolated values of deltaH and deltaS (per mole of residue) at 110 degrees C are similar to those of other globular proteins. These data have been used to show that the temperature at which a protein undergoes cold denaturation depends primarily on the deltaCp (per mol of residue) and that this temperature increases with an increase in deltaCp. The predicted decrease in stability of MBP at low temperatures was experimentally confirmed by carrying out denaturant-mediated unfolding studies at neutral pH at 2 and 28 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose and maltotriose are the two most abundant sugars in brewer s wort, and thus brewer s yeast s ability to utilize them efficiently is of major importance in the brewing process. The increasing tendency to utilize high and very-high-gravity worts containing increased concentrations of maltose and maltotriose renders the need for efficient transport of these sugars even more pronounced. Residual maltose and especially maltotriose are quite often present especially after high and very-high-gravity fermentations. Sugar uptake capacity has been shown to be the rate limiting factor for maltose and maltotriose utilization. The main aim of the present study was to find novel ways to improve maltose and maltotriose utilization during the main fermentation. Maltose and maltotriose uptake characteristics of several ale and lager strains were studied. Genotype determination of the genes needed for maltose and maltotriose utilization was performed. Maltose uptake inhibition studies were performed to reveal the dominant transporter types actually functioning in each of the strains. Temperature-dependence of maltose transport was studied for ale and for lager strains as well as for each of the single sugar transporter proteins Agt1p, Malx1p and Mtt1p. The AGT1 promoter regions of one ale and two lager strains were sequenced by chromosome walking and the promoter elements were searched for using computational methods. The results showed that ale and lager strains predominantly use different maltose and maltotriose transporter types for maltose and maltotriose uptake. Agt1 transporter was found to be the dominant maltose/maltotriose transporter in the ale strains whereas Malx1 and Mtt1- type transporters dominated in the lager strains. All lager strains studied were found to possess a non-functional Agt1 transporter. The ale strains were observed to be more sensitive to temperature decrease in their maltose uptake compared to the lager strains. Single transporters were observed to differ in their sensitivity to temperature decrease and their temperature-dependence was shown to decrease in the order Agt1≥Malx1>Mtt1. The different temperature-dependence between the ale and lager strains was observed to be due to the different dominant maltose/maltotriose transporters ale and lager strains possessed. The AGT1 promoter regions of ale and lager strains were found to differ markedly from the corresponding regions of laboratory strains. The ale strain was found to possess an extra MAL-activator binding site compared to the lager strains. Improved maltose and maltotriose uptake capacity was obtained with a modified lager strain where the AGT1 gene was repaired and put under the control of a strong promoter. Modified strains fermented wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. Significant savings in the main fermentation time were obtained when modified strains were used. In high-gravity wort fermentations 8 20% and in very-high-gravity wort fermentations even 11 37% time savings were obtained. These are economically significant changes and would cause a marked increase in annual output from the same-size of brewhouse and fermentor facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven double cysteine mutants of maltose binding protein (MBP) were generated with one each in the active cleft at position 298 and the second cysteine distributed over both domains of the protein. These cysteines were spin labeled and distances between the labels in biradical pairs determined by pulsed double electron-electron resonance (DEER) measurements. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structure of MBP without maltose and were found to be in excellent agreement. MBP is in a molten globule state at pH 3.3 and is known to still bind its substrate maltose. The nitroxide spin label was sufficiently stable under these conditions. In preliminary experiments, DEER measurements were carried out with one of the mutants yielding a broad distance distribution as was to be expected if there is no explicit tertiary structure and the individual helices pointing into all possible directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structure-function study was carried out to increase knowledge of how glycosidic linkages and molecular weights of carbohydrates contribute toward the selectivity of fermentation by gut bacteria. Oligosaccharides with maltose as the common carbohydrate source were used. Potentially prebiotic alternansucrase and dextransucrase maltose acceptor products were synthesized and separated into different molecular weights using a Bio-gel P2 column. These fractions were characterized by matrix-assisted laser desorption/ionization time-of-flight. Nonprebiotic maltooligosaccharides with degrees of polymerization (DP) from three to seven were commercially obtained for comparison. Growth selectivity of fecal bacteria on these oligosaccharides was studied using an anaerobic in vitro fermentation method. In general, carbohydrates of DP3 showed the highest selectivity towards bifidobacteria; however, oligosaccharides with a higher molecular weight (DP6-DP7) also resulted in a selective fermentation. Oligosaccharides with DPs above seven did not promote the growth of "beneficial" bacteria. The knowledge of how specific structures modify the gut microflora could help to find new prebiotic oligosaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-(1-6) and alpha-(1-3)-linked oligosaccharides were obtained from the reaction between sucrose and maltose, catalyzed by an alternansucrase isolated from Leuconostoc mesenteroides NRRL B-21297 and separated using a Bio-Gel P2 column in six fractions. Fractions 1, 2, and 3 were mainly composed of DP3, DP4, and DP5, respectively. However, fractions 4, 5, and 6 consisted of mixtures from DP5 to IDP9, and they are identified here as DP5.7, DP6.7, and DP7.4, respectively. Potential prebiotic properties of these oligosaccharides were tested using pure and mixed cultures. Generally, in pure studies, most of the tested bacteria failed to grow or grew poorly using the DP6.7 and DP7.4 fractions and showed the greatest growth on DP3. Growth of fecal bacteria on the maltose-acceptor products was tested following an in vitro fermentation method. DP3 showed the highest prebiotic effect, followed by DP4 and DP6.7, whereas DP7.4 did not present any prebiotic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of Canavalia maritima lectin (ConM) complexed with trehalose and maltose revealed relevant point mutations in ConA-like lectins. ConM with the disaccharides and other ConA-like lectins complexed with carbohydrates demonstrated significant differences in the position of H-bonds. The main difference in the ConM structure is the replacement of Pro202 by Ser202, a residue that promotes the approximation of Tyr12 to the carbohydrate-binding site. The O-6' of the second glucose ring in maltose interacts with Tyr12, while in trehalose the interaction is established by the O-2' and Tyr12, explaining the higher affinity of ConM for disaccharides compared to monosaccharides. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that D-maltose is the best inducer of the enzyme synthesis ( 7.05 U/ mg dry biomass at 48 h), while D-glucose and D-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with D-cellobiose. When oat spelt xylan was supplemented with D-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/ L, leading to a reduction of 60% on the enzyme production. on the other hand, when the xylan medium was supplemented with D- xylose ( 3.0 or 5.0 g/ L), this effect was more evident ( 80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/ L, induced xylanase production on the maltose medium. on this medium, the repressive effect of xylose, at 3.0 or 5.0 g/ L, was less expressive when compared to its effect on the xylan medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, electrochemical maltose biosensors based on mutants of the maltose binding protein (MBP) are developed. A ruthenium II complex (Ru II ), which is covalently attached to MBP, serves as an electrochemical reporter of MBP conformational changes. Biosensors were made through direct attachment of Ru II complex modified MBP to gold electrode surfaces. The responses of some individual mutants were evaluated using square wave voltammetry. A maltose-dependent change in Faradic current and capacitance was observed. It is therefore demonstrated that biosensors using generically this family of bacterial periplasmic binding proteins (bPBP) can be made lending themselves to facile biorecognition element preparation and low cost electrochemical transduction.