995 resultados para magnetic targeting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

结合作者在纳米磁性液体方面的研究经历,介绍了生物医学应用领域纳米磁性粒子的组成结构及特点,指出高分子改性纳米磁性粒子具有生物相容性好、稳定性强、载药量高的优点,并对目前高分子改性纳米四氧化三铁颗粒的制备方法及特点进行了对比分析。指出进一步研制磁响应性强、载药量高、粒度分布均匀的纳米磁性粒子,使之对癌细胞具有亲和作用,尽量避免对毛细血管网状内皮系统的清除,是未来肿瘤治疗领域纳米磁性粒子的研发目标,并对目前制备方法中存在的不足提出了改进的建议。


The biomedical application of biocompatible magnetic nanoparticles is introduced with respect to its composition and structure. It is indicated that polymer-coated magnetic nanoparticles have combined properties of long stability and higher drug loading capacity. The methods for the preparation of polymer-coated magnetite nanoparticles are discussed and compared. The preparation of magnetic nanoparticles with higher magnetization response, higher drug loading capacity, and narrow size distribution is to be researched in the future. For targeting delivery, the magnetic nanoparticles should also have high affinity to the tumor cells and could escape from human RES system. For this purpose, some suggestions have been given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

磁靶向给药体系能有效减小化疗药物的毒副作用,提高药效,减少用药量,为癌症肿瘤的靶向治疗提供了一个新的途径。磁性靶向抗癌药物体系主要由纳米级磁性材料、骨架材料、化疗药物组成。其结构可以分为包埋型和偶联型:前者是将药物和磁性纳米材料包埋、分散在高分子基质中;后者是将药物通过某种作用力偶联在磁性高分子微球的表面。尽管磁靶向药物的研究已经取得了很大的进展,但是目前还存在着诸如药物载体的生物相容性、靶向功能单一和药物释放缺乏控制等一系列的问题,并且主要集中在包埋型的制备和研究,药物在输送到病灶的过程中会产生一系列的副反应,在将来的临床应用中受到很大的限制。而偶联型磁靶向给药体系的药物释放既可以达到空间控制的效果,也可以起到一定的时间控制的作用。磁性纳米材料不仅是磁靶向给药体系制备的基础,并且在细胞分离,固定化酶,核酸杂交等生物领域和磁记录、吸波材料等方面有广泛的应用。本论文以此为立题依据,共分为七个部分。第一至第四部分以共沉淀法制备的具有超顺磁性的Fe3O4纳米粒子为磁核,选择能生物降解且无毒的无机材料二氧化硅、天然高分子壳聚糖和人工合成的高分子聚乳酸为包覆材料,常用的抗癌药阿霉素、甲氨喋呤为模型药物,制备了三个偶联型磁靶向给药体系,对其体外药物释放行为及磁学性质进行了测定;第五部分结合生物医药对Fe3O4纳米粒子的应用要求,提出了一种简单制备粒径可控的单分散性的亲油/亲水性Fe3O4纳米粒子的新方法, 同时还探讨了亲油/亲水性Fe3O4纳米粒子的可能形成过程;第六部分将阿霉素以酰胺键接枝在可降解高分子材料P3HB4HB上,将得到的P3HBP4HB-DOX偶联物和第五部分所制备的亲油性Fe3O4纳米粒子共混于氯仿中进行静电纺丝,成功地制备了载有DOX的磁性纤维,改变了以往磁靶向给药体系的单一微球形貌;第七部分以EDTA和FeCl2为原料,采用水热法制备了十二面体四氧化三铁纳米粒子,探讨了EDTA和FeCl2的摩尔比、反应温度、反应时间和反应介质对产物形貌的影响,并提出了这一新颖形貌的可能形成机理。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic targeting is being investigated as a means of local delivery of drugs, combining precision, minimal surgical intervention, and satisfactory concentration of the drug in the target region. In view of these advantages, it is a promising strategy for improving the pharmacological response. Magnetic particles are attracted by a magnetic field gradient, and drugs bound to them can be driven to their site of action by means of the selective application of magnetic field on the desired area. Helicobacter pylori is the commonest chronic bacterial infection. The treatment of choice has commonly been based upon a triple therapy combining two antibiotics and an anti-secretory agent. Furthermore, an extended-release profile is of utmost importance for these formulations. The aim of this work was to develop a magnetic system containing the antibiotic amoxicillin for oral magnetic drug targeting. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. The second step was coating the particles and amoxicillin with Eudragit® S-100 by spray-drying technique. The system obtained demonstrated through the characterization studies carried out a possible oral drug delivery system, consisting in magnetite microparticles and amoxicillin, coated with a polymer acid resistant. This system can be used to deliver drugs to the stomach for treatment of infections in this organ. Another important finding in this work is that it opens new prospects to coat magnetic microparticles by the technique of spray-drying.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim Evaluate potential of newly-developed, biocompatible iron oxide magnetic nanoparticles (MNPs) conjugated with J591, an antibody to an extracellular epitope of prostate specific membrane antigen (PSMA), to enhance MRI of prostate cancer (PCa). Materials & Methods Specific binding to PSMA by J591-MNP was investigated in vitro. MRI studies were performed on orthotopic tumor-bearing NOD.SCID mice 2h and 24hr after intravenous injection of J591-MNPs, or non-targeting MNPs. Results and Conclusions In vitro, MNPs did not affect PCa cell viability, and conjugation to J591 did not compromise antibody specificity and enhanced cellular iron uptake. In vivo, PSMA-targeting MNPs increased MR contrast of tumors, but not by non-targeting MNPs. This provides proof-of-concept that PSMA-targeting MNPs have potential to enhance MR detection/localization of PCa.,

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction Novel imaging techniques for prostate cancer (PCa) are required to improve staging and real-time assessment of therapeutic response. We performed preclinical evaluation of newly-developed, biocompatible magnetic nanoparticles (MNPs) conjugated with J591, an antibody specific for prostate specific membrane antigen (PSMA), to enhance magnetic resonance imaging (MRI) of PCa. PSMA is expressed on ∼90% of PCa, including those that are castrate-resistant, rendering it as a rational target for PCa imaging. Materials and Methods The specificity of J591 for PSMA was confirmed by flow cytometric analysis of several PCa cell lines of known PSMA status. MNPs were prepared, engineered to the appropriate size, labeled with DiR fluorophore, and their toxicity to a panel of PC cells was assessed by in vitro Alamar Blue assay. Immunohistochemistry, fluorescence microscopy and Prussian Blue staining (iron uptake) were used to evaluate PSMA specificity of J591-MNP conjugates. In vivo MRI studies (16.4T MRI system) were performed using live immunodeficient mice bearing orthotopic LNCaP xenografts and injected intravenously with J591-MNPs or MNPs alone. Results MNPs were non-toxic to PCa cells. J591-MNP conjugates showed no compromise in specificity of binding to PSMA+ cells and showed enhanced iron uptake compared with MNPs alone. In vivo, tumour targeting (significant MR image contrast) was evident in mice injected with J591-MNPs, but not MNPs alone. Resected tumours from targeted mice had an accumulation of MNPs, not seen in normal control prostate. Conclusions Application of PSMA-targeting MNPs into conventional MRI has potential to enhance PCa detection and localization in real-time, improving patient management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magnetically functionalized mesoporous silica spheres with different size (average diameter, A.D.) from 150 nm to 2 mu m and pore size distribution were synthesized by generating magnetic FexOy nanoparticles onto the mesoporous silica hosts using the sol-gel method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), N-2 adsorption/desorption results show that these composites conserved regular sphere morphology and ordered mesoporous structure after the formation of FexOy nanoparticles. XRD and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites with different gamma-Fe2O3 loading amounts possess super-paramagnetic properties at 300 K, and the saturation magnetization increases with increasing Fe ratio loaded.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study reports on the successful use of magnetic albumin nanosphere (MAN), consisting of maghemite nanoparticles hosted by albumin-based nanosphere, to target different sites within the central nervous system (CNS). Ultrastructural analysis by transmission electron microscopy (TEM) of the material collected from the mice was performed in the time window of 30 minutes up to 30 days after administration. Evidence found that the administered MAN was initially internalized and transported by erythrocytes across the blood-brain-barrier and transferred to glial cells and neuropils before internalization by neurons, mainly in the cerebellum. We hypothesize that the efficiency of MAN in crossing the BBB with no pathological alterations is due to the synergistic effect of its two main components, the iron-based nanosized particles and the hosting albumin-based nanospheres. We found that the MAN in targeting the CNS represents an important step towards the design of nanosized materials for clinical and diagnostic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the complex nature of diseased tissue in vivo requires development of more advanced nanomedicines, where synthesis of multifunctional polymers combines imaging multimodality with a biocompatible, tunable, and functional nanomaterial carrier. Here we describe the development of polymeric nanoparticles for multimodal imaging of disease states in vivo. The nanoparticle design utilizes the abundant functionality and tunable physicochemical properties of synthetically robust polymeric systems to facilitate targeted imaging of tumors in mice. For the first time, high-resolution 19F/1H magnetic resonance imaging is combined with sensitive and versatile fluorescence imaging in a polymeric material for in vivo detection of tumors. We highlight how control over the chemistry during synthesis allows manipulation of nanoparticle size and function and can lead to very high targeting efficiency to B16 melanoma cells, both in vitro and in vivo. Importantly, the combination of imaging modalities within a polymeric nanoparticle provides information on the tumor mass across various size scales in vivo, from millimeters down to tens of micrometers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose-appended photocytotoxic iron(III) complexes of a tridentate Schiff base phenolate ligand Fe(bpyag) (L)] (NO3) (1-3), where bpyag is N,N-bis(2- pyridylmethyl)-2-aminoethyl-beta-D-glucopyranoside and H2L is 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (H(2)phap) in 1, 3-(2-hydroxyphenylimino)-9-anthrylbutan-1-one (H(2)anap) 2, and 3- (2-hydroxyphenylimino)-1-pyrenylbutan-1-one (H(2)pyap) in 3, were synthesized and characterized. The complex Fe(dpma)(anapn(NO3) (4), having bis-(2-pyridylmethyl)benzylamine (dpma), in which the glucose moiety of bpyag is substituted by a phenyl group, was used as a control, and the complex Fe(dpma)(anap)](PF6) (4a) was structurally characterized by X-ray crystallography. The structure shows a FeN4O2 core in a distorted octahedral geometry. The high-spin iron(III) complexes with magnetic moment value of similar to 5.9 mu(B) showed a low-energy phenolate-to-Fe(III) charge-transfer (CT) absorption band as a shoulder near 500 nm with a tail extending to 700 nm and an irreversible Fe(III)-Fe(II) redox couple near -0.6 V versus saturated calomel electrode. The complexes are avid binders to calf thymus DNA and showed photocleavage of supercoiled pUC19 DNA in red (647 nm) and green (532 nm) light. Complexes 2 and 3 displayed significant photocytotoxicity in red light, with an IC50 value of similar to 20 mu M in HeLa and HaCaT cells, and no significant toxicity in dark. The cell death is via an apoptotic pathway, by generation of reactive oxygen species. Preferential internalization of the carbohydrate-appended complexes 2 and 3 was evidenced in HeLa cells as compared to the control complex 4. A 5-fold increase in the cellular uptake was observed for the active complexes in HeLa cells. The photophysical properties of the complexes are rationalized from the density functional theory calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is a widely used non-invasive medical tool for detection and diagnosis of cancer. In recent years, MRI has witnessed significant contributions from nanotechnology to incorporate advanced features such as multimodality of nanoparticles, therapeutic delivery, specific targeting and the optical detectability for molecular imaging. Accurate composition, right scheme of surface chemistry and properly designed structure is essential for achieving desired properties of nanomaterials such as non-fouling surface, high imaging contrast, chemical stability, target specificity and/or multimodality. This review provides an overview of the recent progress in theranostic nanomaterials in imaging and the development of nanomaterial based magnetic resonance imaging of cancer. In particular, targeted theranostics is a promising approach along with its targeting strategy in cancer treatment using MRI and multimodal imaging. We also discuss recent advances in integrin mediated targeted MRI of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-parametric magnetic resonance imaging (mp-MRI) has become an increasingly important method for detecting and treating prostate cancer. Transrectal ultrasound (TRUS) is the most commonly used method for guiding prostate needle biopsy and remains the gold standard for diagnosis of prostate cancer. MRI-to-TRUS image reg- istration is an important technology for enabling computer-assisted targeting of the majority of prostate lesions that are visible in MRI but not independently distinguishable in TRUS images. The aim of this study was to estimate the needle placement accuracy of an image guidance system (SmartTargetÒ), developed by our research group, using a surgical training phantom.