518 resultados para macrofauna
Resumo:
Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna–soil structure interactions, (ii) functional dynamics of macrofauna taxa,and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.
Resumo:
These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as `soil engineers' and their diversity and abundance are nowadays considered as relevant bioindicators of soil quality by many scientists and policy makers. Despite this abundant literature, the soil engineering concept remains a `preach to the choir' and bioturbation only perceived as important for soil ecologists. We discussed in this article the main mechanisms by which soil engineers impact soil structure and proposed to classify soil engineers with respect to their capacity to produce biostructures and modify them. We underlined the lack of studies considering biostructure dynamics and presented recent techniques in this purpose. We discussed why soil engineering concept is mainly considered by soil ecologists and call for a better collaboration between soil ecologists and soil physicists. Finally, we summarized main challenges and questions that need to be answered to integrate soil engineers activities in soil structure studies. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Con el objetivo de inferir en la salud del suelo, se realizo entre diciembre 2013 y febrero del 2014, una caracterización de la diversidad de la macrofauna en dos sistemas de manejo de Moringa oleifera Lam. La metodología implementada fue la propuesta por el programa Tropical Soil Biology and Fertility (TSBF). Doce monolitos por sistema de manejo fueron monitoreados. Los organismos colectados fueron identificados a nivel de Phyllum, Clase, Orden y Familia. Los resultados muestran mayor abundancia para todos los phyllum en el sistema de manejo agroecológico. La clase insecta registro el número más alto de individuos. En el sistema convencional se identificaron cinco clases, dos órdenes y cuatro familias, en cambio en el sistema agroecológico estos valores fueron mayores para todas las categorías. En la profundidad de 10-20cm se observó una mayor abundancia de individuos. Las termitas tuvieron mayor presencia en ambos sistemas no así con las lombrices de tierra que tuvieron mayor presencia en el sistema agroecológico.
Resumo:
The benthic macrofauna of the New York Bight has been monitored extensively, primarily to determine trends over space and time in biological effects of waste inputs. In the present study, from 44 to 48 stations were sampled each summer from 1980-1985. Data from other Bight benthic studies are included to· extend the temporal coverage from 1979 to 1989. Numbers of species and amphipods per sample, taken as relatively sensitive indicators of environmental stress, showed consistent spatial patterns. Lowest values were found in the Christiaensen Basin and other inshore areas, and numbers increased toward the outermost shelf and Hudson Shelf Valley stations. There were statistically significant decreases in species and amphipods at most stations from 1980 to 1985. (Preliminary data from a more recent study suggest numbers of species increased again between 1986 and 1989.) Cluster analysis of 1980-85 data indicated several distinct assemblages-sewage sludge dumpsite, sludge accumulation area, inner Shelf Valley, outer Shelf Valley, outer shelf-with little change over time. The "enriched" and "highly altered" assemblages in the Basin appear similar to those reported since sampling began there in 1968. No consistently defaunated areas have been found in any sampling programs over the past 20 years. On a gross level, therefore, recent faunal responses to any environmental changes are not evident, but the more sensitive measures used, i.e. numbers of species and amphipods, do indicate widespread recent effects. Causes of the faunal changes are not obvious; some possibilities, including increasing effects of sewage sludge or other waste inputs, natural factors, and sampling artifacts, are discussed. (PDF file contains 54 pages.)
Resumo:
Information on long-term temporal variability of and trends in benthic community-structure variables, such as biomass, is needed to estimate the range of normal variability in comparison with the effects of environmental change or disturbance. Fishery resource distribution and population growth will be influenced by such variability. This study examines benthic macrofaunal biomass and related data collected annually between 1978 and 1985 at 27 sites on the continental shelf of the northwestern Atlantic, from North Carolina to the southern Gulf of Maine. The study was expanded at several sites with data from other studies collected at the same sites prior to 1978. Results indicate that although there was interannual and seasonal variability, as expected, biomass levels over the study period showed few clear trends. Sites exhibiting trends were either in pollution-stressed coastal areas or influenced by the population dynamics of one or a few species, especially echinoderms. (PDF file contains 34 pages.)
Resumo:
Approximately 100,000 cubic yards of sand was transported to the ocean beach to renourish the eroded beach front during the period December 1985 through May 1986. The ocean beach at Sebastian Inlet SRA was previously studied in a project examining the benthic macrofauna and the fishes of the nearshore zone during 1981-1982 (Allenbaugh, 1984; Peters, 1984; Nelson, unpublished). In view of the existing data, the US Army Corps of Engineers provided funding to study the effects of the beach renourishment activities at Sebastian Inlet SRA on the benthic macrofauna and the fishes of the nearshore zone. This is the report on the results of this study.
Resumo:
The present investigation was undertaken to establish a reference situation for future use, to identify temporal and spatial composition of macrofauna and estimate some ecological indices in the sub tidal waters along the Bushehr coastal waters in Persian Gulf. Six transects were selected including Genaveh, Farakeh, Shif, Bandargah, Rostami and Asalouyeh, at each transect 3 station were sampled in depths of zero, 5 and 10 metres. Sampling was seasonally carried out by a VAN VEEN grab 0.0225 m2, during summer 2008 until spring 2009. Samples were wet sieved immediately using 0.5 mm mesh size sieves and sediment retained in the sieve was preserved in 4% buffered formalin solution. Macrofauna specimen were separated from the sediments using decantation and elutriation methods, enumerated and identified up to the Genus level. Environmental factors such as temperature. pH, and salinity were recorded in field using sensitive probs and refractometer (for salinity) and also sediment samples were taken for TOM and grain size analysis in all the stations. 5611 specimens belonging to 66 genera were collected during the present study. Polychaetes were dominant both in terms of genus number (31) and relative abundance (74 % of total macrofaunal abundance). The other dominant groups were Artheropoda, (16.1%), Molusca (2.8%), Echinodermata (1.29%) and others including Nematoda, Nemertina, Echiura and Turbellaria (5.8%). Thirty one Genera belong of 27 families of polychaeta, one genus and family of Subphylum Chlicerata,19 genera belong to 14 families of Crustacea, 8 genera belong to 6 families of Molusca, were indentified in the studied region. 1 family (Polygordidae) and 3 genera (Flabeligera, Pilargis and Polygordius) of Polychaeta, 1 family (Nymphonidae) and genus (Nymphon) of Chelicerata, 1 Family (Nematoplanidae) and genus (Nematoplana) of Turbellaria, were identified for the first time in Persian Gulf area. The result indicated that macrofauna organism have strong relationship with the grain size characteristics of the sediments they inhabit. The most surface deposit feeder specimens such as Prionospio and Cossura were found in zero meters depth of Genaveh, Farakeh, Bandargah, Rostami and Asalouyeh stations with sandy substratum, however the most burrowing deposit feeder and scavenger specimens such as Capitella and Petaloproctus were collected in 5 and 10 meter depths of stations with silty–clay substratum. The annual mean abundance, Shanon- weiner diversity and evenness of macrofauna were estimated1152.73 N/ m² , 2.72 and 0.792 respectively .The annual average biomass and secondary production were computed 1.797 gDW m² and 3.594 gDW m² y-1 .The average of water temperature, salinity, pH and oxygen concentration were recorded between 16.37-36.05 °C, 38-42 g/l, 7.89-8.76 and 4.23-8.23 mg/l, respectively during this study in 6 studied region. Among of investigated stations Asalouyeh adjacent of effluent canal of Gas and petrochemical industry sewage and Farakeh regions adjacent the Helleh estuary had the lowets and the highest community indices. The average of diversity and density in 5 meters depth stations with moderate of sand, silt and clay were slightly more than 2 other depths stations, it seems that 5 meters stations are made a transition habitats between 2 sandy and clay habitats, that can be used by 2 groups of surface and borrowing deposit feeders. Based on the data provided in this survey, the temperature variation, sediment texture, TOM, type habitat and manmade factors of Gas and petrochemical industries have had the most effect on the macrofauna community structure in the studied region during sampling periods.
Resumo:
The purpose of inlake herbicide trials was to assess on the aquatic environment and resources, of in-lake of weeder 64 (2,4-0 amine) and Rodio (Glyphosate) water hyacinth the effects application to control water hyacinth. The experiments reported here specifically studied the effects of the herbicides on the diversity and abundance of aquatic macrofauna associated with the water weed. Results from this and similar experiments which assessed herbicide efficacy on water hyacinth; dissipation in water, impact on water quality, algal biomass and on diversity and abundance of zooplankton and macrofauna were all to be evaluated as input into the environmental impact assessment exercise required to facilitate decisions on the use of herbicides to control water hyacinth in Uganda.
Resumo:
Grab and dredge samples have been collected on a grid of 155 sublittoral stations in the Bristol Channel. The faunal data have been analysed using a hierarchical sorting technique to cluster stations with similar species compositions. At a similarity level of 18%, groups of stations with a species composition similar to the classical Petersen communities were defined. Three of Petersen's communities were recognized in the outer part of the Channel, the Venus, Abra and Modiolus communities. The fauna of the inner part of the Channel is reduced and does not correspond with any previously recognized community type. Possible causes for this faunal reduction are discussed. The substrate distribution and the macrofaunal community distribution are mapped. Side-scan sonograms are shown to be a useful adjunct to the interpretation of faunal distributions.