973 resultados para machine selection


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diplomityön tavoitteena oli tutkia pyöröterän kehältä ohjauksen soveltuvuutta kaksiakselisiin jakosahoihin. Tavoitteena oli tuottaa uutta tietoa sahalaitoksen tuotantoprosessin koneiden suunnitteluun sahakonetekniikan edelleen kehittämiseksi. Työ voi myös palvella sahalaitoksia yhtenä työkaluna koneiden valinnassa tuotantoprosessin tehostamiseksi. Diplomityössä on tutkittu tekniikkaa suomalaisen sahakonevalmistajan, Veisto Oy:n näkökulmasta mutta työn tulokset ovat tarkoitettu yleisesti sovellettaviksi. Diplomityön kirjallisuusosa koostuu teräohjainjärjestelmän etujen ja haittojen kartoituksesta puuraaka-aineen käyttösuhteen, käytettävyyden, tuotantonopeuksien, kunnossapidon ja käytön näkökannoilta tarkasteltuna. Lisäksi työhön on liitetty aiheeseen kiinteästi liittyvä kirjallisuuteen ja valmistajilta saatuihin tietoihin perustuva katsaus tämän hetken pyöröterätekniikkaan. Työssä analysoidaan myös kevättalvella 2002 Itä-Kanadassa suoritettujen sahauskokeiden tuloksia. Kokeissa tutkittiin kehältä ohjatuille terille muutetun jakosahayksikön suorituskykyä ja käytettävyyttä. Tutkittava kone oli Veisto Oy:n valmistama muuttuva-asetteinen pelkkahakkuri -VDA -jakosaha, tyypiltään HewSaw R200 MSA SE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työssä vertaillaan kaupallisia lyhyen kantaman radiotekniikoita. Vertailujen pohjalta valitaan parhaiten sovelluskohteeseen soveltuva radiotekniikka.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, public policy has been offering subsidized credit for machine purchase to family farmers. However, there is no methodological procedure to select a suitable tractor for these farmers' situation. In this way, we aimed to develop a selection model for smallholder farmers from Pelotas city region in the state of Rio Grande do Sul. Building a multicriteria model to aid decisions is divided into three main stages: structuring stage (identifying stakeholders, decisional context and model creation), evaluation stage (stakeholder preference quantification) and recommendation stage (choice selection). The Multicriteria method is able to identify and value the criteria used in tractor selection by regional family farmers. Six main evaluation areas were identified: operational cost (weight 0.20), purchase cost (weight 0.22), maintainability (weight 0.10), tractor capacity (weight 0.26), ergonomics (weight 0.14) and safety (weight 0.08). The best-rated tractor model (14.7 kW rated power) also was the one purchased by 53.3% of local families.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Process planning is a very important industrial activity, since it determines how a part or a product is manufactured. Process planning decisions include machine selection, tool selection, and cutting conditions determination, and thus it is a complex activity. In the presence of unstable demand, flexibility has become a very important characteristic of today's successful industries, for which Flexible Manufacturing Systems (FMSs) have been proposed as a solution. However, we believe that FMS control software is not flexible enough to adapt to different manufacturing system conditions aiming at increasing the system's efficiency. One means to overcome this limitation is to include pre-planned alternatives in the process plan; then planning decisions are made by the control system in real time to select the most appropriate alternative according to the conditions of the shop floor. Some of the advantages of this approach reported in the literature are the reduction of the number of tool setups, and the selection of a replacement machine for executing an operation. To verify whether the presence of alternatives in process plans actually increases the efficiency of the manufacturing system, an investigation was carried out using simulation and design of experiments techniques for alternative plans on a single machine. The proposed methodology and the results are discussed within this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este artículo describe una estrategia de selección de frases para hacer el ajuste de un sistema de traducción estadístico basado en el decodificador Moses que traduce del español al inglés. En este trabajo proponemos dos posibilidades para realizar esta selección de las frases del corpus de validación que más se parecen a las frases que queremos traducir (frases de test en lengua origen). Con esta selección podemos obtener unos mejores pesos de los modelos para emplearlos después en el proceso de traducción y, por tanto, mejorar los resultados. Concretamente, con el método de selección basado en la medida de similitud propuesta en este artículo, mejoramos la medida BLEU del 27,17% con el corpus de validación completo al 27,27% seleccionando las frases para el ajuste. Estos resultados se acercan a los del experimento ORACLE: se utilizan las mismas frases de test para hacer el ajuste de los pesos. En este caso, el BLEU obtenido es de 27,51%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A fault tolerant, 5-phase PM generator has been developed for use on the low pressure (LP) shaft of an aircraft gas turbine engine. The machine operates at variable speed and therefore has a variable voltage, variable frequency electrical output (VVVF). The generator is to be used to provide a 350V DC bus for distribution throughout the aircraft, and a study has been carried out that identifies the most suitable AC-DC converter topology for this machine in terms of losses, electrical component ratings, filtering requirements and circuit complexity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In machine learning and pattern recognition tasks, the use of feature discretization techniques may have several advantages. The discretized features may hold enough information for the learning task at hand, while ignoring minor fluctuations that are irrelevant or harmful for that task. The discretized features have more compact representations that may yield both better accuracy and lower training time, as compared to the use of the original features. However, in many cases, mainly with medium and high-dimensional data, the large number of features usually implies that there is some redundancy among them. Thus, we may further apply feature selection (FS) techniques on the discrete data, keeping the most relevant features, while discarding the irrelevant and redundant ones. In this paper, we propose relevance and redundancy criteria for supervised feature selection techniques on discrete data. These criteria are applied to the bin-class histograms of the discrete features. The experimental results, on public benchmark data, show that the proposed criteria can achieve better accuracy than widely used relevance and redundancy criteria, such as mutual information and the Fisher ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).