906 resultados para mTOR pathway
Resumo:
Osteoarthritis is characterized by degenerative alterations of articular cartilage including both the degradation of extracellular matrix and the death of chondrocytes. The PI3K/Akt pathway has been demonstrated to involve in both processes. Inhibition of its downstream target NF-kB reduces the degradation of extracellular matrix via decreased production of matrix metalloproteinases while inhibition of mTOR increased autophagy to reduce chondrocyte death. However, mTOR feedback inhibits the activity of the PI3K/Akt pathway and inhibition of mTOR could result in increased activity of the PI3K/Akt/NF-kB pathway. We proposed that the use of dual inhibitors of PI3K and mTOR could be a promising approach to more efficiently inhibit the PI3K/Akt pathway than rapamycin or PI3K inhibitor alone and produce better treatment outcome.
Resumo:
The PI3K/AKT/mTOR pathway regulates cell growth and proliferation and is often dysregulated in cancer due to mutation, amplification, deletion, methylation and post-translational modifications. We and others have shown that activation of this pathway in non-small cell lung cancer (NSCLC) leads to a more aggressive disease which correlates to poor prognosis for patients. A multitude of selective inhibitors are in development which target key regulators in this pathway, however the success of PI3K targeted inhibition has been hampered by a high rate of innate and acquired resistance. Response to PI3K inhibition may be improved by co-targeting potential mediators of resistance, such as related cell surface receptors or other intracellular signaling pathways which cross-talk with the PI3K pathway. Inhibition of the PI3K pathway may also overcome radioresistance, chemoresistance and immune evasion in NSCLC. The identification of appropriate patient cohorts who will benefit from PI3K co-targeted inhibition strategies will be key to the success of these inhibitors.
Resumo:
Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.
Resumo:
PURPOSE: The Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancers and plays an important role in small cell lung cancer (SCLC) biology. We investigated the potential of targeting mTOR signaling as a novel antitumor approach in SCLC. EXPERIMENTAL DESIGN: The expression of mTOR in patient specimens and in a panel of SCLC cell lines was analyzed. The effects on SCLC cell survival and downstream signaling were determined following mTOR inhibition by the rapamycin derivative RAD001 (Everolimus) or down-regulation by small interfering RNA. RESULTS: We found elevated expression of mTOR in patient specimens and SCLC cell lines, compared with normal lung tissue and normal lung epithelial cells. RAD001 treatment impaired basal and growth factor-stimulated cell growth in a panel of SCLC cell lines. Cells with increased Akt pathway activation were more sensitive to RAD001. Accordingly, a constitutive activation of the Akt/mTOR pathway was sufficient to sensitize resistant SCLC cells to the cytotoxic effect of RAD001. In the sensitive cells, RAD001 showed a strong additive effect to the proapoptotic action of the chemotherapeutic agent etoposide. Intriguingly, we observed low Bcl-2 family proteins levels in the SCLC cells with a constitutive Akt pathway activation, whereas an increased expression was detected in the RAD001-resistant SCLC cells. An antisense construct targeting Bcl-2 or a Bcl-2-specific inhibitor was able to sensitize resistant SCLC cells to RAD001. Moreover, SCLC tumor growth in vivo was significantly inhibited by RAD001. CONCLUSION: Together, our data show that inhibiting mTOR signaling with RAD001 potently disrupts growth and survival signaling in human SCLC cells.
Resumo:
Human papilloma virus (HPV) infection of the uterine cervix is linked to the pathogenesis of cervical cancer. Preclinical in vitro and in vivo studies using HPV-containing human cervical carcinoma cell lines have shown that the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, erlotinib, can induce growth delay of xenografts. Activation of Akt and mTOR are also observed in cervical squamous cell carcinoma and, the expression of phosphorylated mTOR was reported to serve as a marker to predict response to chemotherapy and survival of cervical cancer patients. Therefore, we investigated: a) the expression level of EGFR in cervical squamous cell carcinoma (SCC) and high-grade squamous intraepithelial lesions (HSIL) versus non-neoplastic cervical squamous epithelium; b) the state of activation of the mTOR pathway in these same tissues; and c) any impact of these signal transduction molecules on cell cycle. Formalin-fixed paraffin-embedded tissue microarray blocks containing 20 samples each of normal cervix, HSIL and invasive SCC, derived from a total of 60 cases of cervical biopsies and cervical conizations were examined. Immunohistochemistry was utilized to detect the following antigens: EGFR; mTOR pathway markers, phosphorylated (p)-mTOR (Ser2448) and p-p70S6K (Thr389); and cell cycle associated proteins, Ki-67 and S phase kinase-associated protein (Skp)2. Protein compartmentalization and expression were quantified in regard to proportion (0-100%) and intensity (0-3+). Mitotic index (MI) was also assessed. An expression index (EI) for pmTOR, p-p70S6K and EGFR, respectively was calculated by taking the product of intensity score and proportion of positively staining cells. We found that plasmalemmal EGFR expression was limited to the basal/parabasal cells (2-3+, EI = 67) in normal cervical epithelium (NL), but was diffusely positive in all HSIL (EI = 237) and SCC (EI 226). The pattern of cytoplasmic p-mTOR and nuclear p-p70S6K expression was similar to that of EGFR; all showed a significantly increased EI in HSIL/SCC versus NL (p<0.02). Nuclear translocation of p-mTOR was observed in all SCC lesions (EI = 202) and was significantly increased versus both HSIL (EI = 89) and NL (EI = 54) with p<0.015 and p<0.0001, respectively. Concomitant increases in MI and proportion of nuclear Ki-67 and Skp2 expression were noted in HSIL and SCC. In conclusion, morphoproteomic analysis reveals constitutive activation and overexpression of the mTOR pathway in HSIL and SCC as evidenced by: increased nuclear translocation of pmTOR and p-p70S6K, phosphorylated at putative sites of activation, Ser2448 and Thr389, respectively; correlative overexpression of the upstream signal transducer, EGFR, and increases in cell cycle correlates, Skp2 and mitotic indices. These results suggest that the mTOR pathway plays a key role in cervical carcinogenesis and targeted therapies may be developed for SCC as well as its precursor lesion, HSIL.
Resumo:
Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.
Resumo:
Bladder cancer is the fourth most common cancer in men in the United States. There is compelling evidence supporting that genetic variations contribute to the risk and outcomes of bladder cancer. The PI3K-AKT-mTOR pathway is a major cellular pathway involved in proliferation, invasion, inflammation, tumorigenesis, and drug response. Somatic aberrations of PI3K-AKT-mTOR pathway are frequent events in several cancers including bladder cancer; however, no studies have investigated the role of germline genetic variations in this pathway in bladder cancer. In this project, we used a large case control study to evaluate the associations of a comprehensive catalogue of SNPs in this pathway with bladder cancer risk and outcomes. Three SNPs in RAPTOR were significantly associated with susceptibility: rs11653499 (OR: 1.79, 95%CI: 1.24–2.60), rs7211818 (OR: 2.13, 95%CI: 1.35–3.36), and rs7212142 (OR: 1.57, 95%CI: 1.19–2.07). Two haplotypes constructed from these 3 SNPs were also associated with bladder cancer risk. In combined analysis, a significant trend was observed for increased risk with an increase in the number of unfavorable genotypes (P for trend<0.001). Classification and regression tree analysis identified potential gene-environment interactions between RPS6KA5 rs11653499 and smoking. In superficial bladder cancer, we found that PTEN rs1234219 and rs11202600, TSC1 rs7040593, RAPTOR rs901065, and PIK3R1 rs251404 were significantly associated with recurrence in patients receiving BCG. In muscle invasive and metastatic bladder cancer, AKT2 rs3730050, PIK3R1 rs10515074, and RAPTOR rs9906827 were associated with survival. Survival tree analysis revealed potential gene-gene interactions: patients carrying the unfavorable genotypes of PTEN rs1234219 and TSC1 rs704059 exhibited a 5.24-fold (95% CI: 2.44–11.24) increased risk of recurrence. In combined analysis, with the increasing number of unfavorable genotypes, there was a significant trend of higher risk of recurrence and death (P for trend<0.001) in Cox proportional hazard regression analysis, and shorter event (recurrence and death) free survival in Kaplan-Meier estimates (P log rank<0.001). This study strongly suggests that genetic variations in PI3K-AKT-mTOR pathway play an important role in bladder cancer development. The identified SNPs, if validated in further studies, may become valuable biomarkers in assessing an individual's cancer risk, predicting prognosis and treatment response, and facilitating physicians to make individualized treatment decisions. ^
Resumo:
The interplay between obesity, physical activity, weight gain and genetic variants in mTOR pathway have not been studied in renal cell carcinoma (RCC). We examined the associations between obesity, weight gain, physical activity and RCC risk. We also analyzed whether genetic variants in the mTOR pathway could modify the association. Incident renal cell carcinoma cases and healthy controls were recruited from the University of Texas MD Anderson Cancer Center in Houston, Texas. Cases and controls were frequency-matched by age (±5 years), ethnicity, sex, and county of residence. Epidemiologic data were collected via in-person interview. A total of 577 cases and 593 healthy controls (all white) were included. One hundred ninety-two (192) SNPs from 22 genes were available and their genotyping data were extracted from previous genome-wide association studies. Logistic regression and regression spline were performed to obtain odds ratios. Obesity at age 20, 40, and 3 years prior to diagnosis/recruitment, and moderate and large weight gain from age 20 to 40 were each significantly associated with increased RCC risk. Low physical activity was associated with a 4.08-fold (95% CI: 2.92-5.70) increased risk. Five single nucleotide polymorphisms (SNPs) were significantly associated with RCC risk and their cumulative effect increased the risk by up to 72% (95% CI: 1.20-2.46). Strata specific effects for weight change and genotyping cumulative groups were observed. However, no interaction was suggested by our study. In conclusion, energy balance related risk factors and genetic variants in the mTOR pathway may jointly influence susceptibility to RCC. ^
Resumo:
Tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) by the insulin receptor permits this docking protein to interact with signaling proteins that promote insulin action. Serine phosphorylation uncouples IRS-1 from the insulin receptor, thereby inhibiting its tyrosine phosphorylation and insulin signaling. For this reason, there is great interest in identifying serine/threonine kinases for which IRS-1 is a substrate. Tumor necrosis factor (TNF) inhibited insulin-promoted tyrosine phosphorylation of IRS-1 and activated the Akt/protein kinase B serine-threonine kinase, a downstream target for phosphatidylinositol 3-kinase (PI 3-kinase). The effect of TNF on insulin-promoted tyrosine phosphorylation of IRS-1 was blocked by inhibition of PI 3-kinase and the PTEN tumor suppessor, which dephosphorylates the lipids that mediate PI 3-kinase functions, whereas constitutively active Akt impaired insulin-promoted IRS-1 tyrosine phosphorylation. Conversely, TNF inhibition of IRS-1 tyrosine phosphorylation was blocked by kinase dead Akt. Inhibition of IRS-1 tyrosine phosphorylation by TNF was blocked by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a downstream target of Akt. mTOR induced the serine phosphorylation of IRS-1 (Ser-636/639), and such phosphorylation was inhibited by rapamycin. These results suggest that TNF impairs insulin signaling through IRS-1 by activation of a PI 3-kinase/Akt/mTOR pathway, which is antagonized by PTEN.
Resumo:
Quelque 30 % de la population neuronale du cortex mammalien est composée d’une population très hétérogène d’interneurones GABAergiques. Ces interneurones diffèrent quant à leur morphologie, leur expression génique, leurs propriétés électrophysiologiques et leurs cibles subcellulaires, formant une riche diversité. Après leur naissance dans les éminences ganglioniques, ces cellules migrent vers les différentes couches corticales. Les interneurones GABAergiques corticaux exprimant la parvalbumin (PV), lesquels constituent le sous-type majeur des interneurones GABAergiques, ciblent spécifiquement le soma et les dendrites proximales des neurones principaux et des neurones PV+. Ces interneurones sont nommés cellules à panier (Basket Cells –BCs) en raison de la complexité morphologique de leur axone. La maturation de la connectivité distincte des BCs PV+, caractérisée par une augmentation de la complexité de l’axone et de la densité synaptique, se déroule graduellement chez la souris juvénile. Des travaux précédents ont commencé à élucider les mécanismes contrôlant ce processus de maturation, identifiant des facteurs génétiques, l’activité neuronale ainsi que l’expérience sensorielle. Cette augmentation marquante de la complexité axonale et de la synaptogénèse durant cette phase de maturation suggère la nécessité d’une synthèse de protéines élevée. La voie de signalisation de la cible mécanistique de la rapamycine (Mechanistic Target Of Rapamycin -mTOR) a été impliquée dans le contrôle de plusieurs aspects neurodéveloppementaux en régulant la synthèse de protéines. Des mutations des régulateurs Tsc1 et Tsc2 du complexe mTOR1 causent la sclérose tubéreuse (TSC) chez l’humain. La majorité des patients TSC développent des problèmes neurologiques incluant des crises épileptiques, des retards mentaux et l’autisme. D’études récentes ont investigué le rôle de la dérégulation de la voie de signalisation de mTOR dans les neurones corticaux excitateurs. Toutefois, son rôle dans le développement des interneurones GABAergiques corticaux et la contribution spécifique de ces interneurones GABAergiques altérés dans les manifestations de la maladie demeurent largement inconnus. Ici, nous avons investigué si et comment l’ablation du gène Tsc1 perturbe le développement de la connectivité GABAergique, autant in vitro que in vivo. Pour investiguer le rôle de l’activation de mTORC1 dans le développement d’une BC unique, nous avons délété le gène Tsc1 en transfectant CRE-GFP dirigé par un promoteur spécifique aux BCs dans des cultures organotypiques provenant de souris Tsc1lox. Le knockdown in vitro de Tsc1 a causé une augmentation précoce de la densité des boutons et des embranchements terminaux formés par les BCs mutantes, augmentation renversée par le traitement à la rapamycine. Ces données suggèrent que l’hyperactivation de la voie de signalisation de mTOR affecte le rythme de la maturation des synapses des BCs. Pour investiguer le rôle de mTORC1 dans les interneurones GABAergiques in vivo, nous avons croisé les souris Tsc1lox avec les souris Nkx2.1-Cre et PV-Cre. À P18, les souris Tg(Nkx2.1-Cre);Tsc1flox/flox ont montré une hyperactivation de mTORC1 et une hypertrophie somatique des BCs de même qu’une augmentation de l’expression de PV dans la région périsomatique des neurones pyramidaux. Au contraire, à P45 nous avons découvert une réduction de la densité des punctas périsomatiques PV-gephyrin (un marqueur post-synaptique GABAergique). L’étude de la morphologie des BCs en cultures organotypiques provenant du knock-out conditionnel Nkx2.1-Cre a confirmé l’augmentation initiale du rythme de maturation, lequel s’effondre ensuite aux étapes développementales tardives. De plus, les souris Tg(Nkx2.1Cre);Tsc1flox/flox montrent des déficits dans la mémoire de travail et le comportement social et ce d’une façon dose-dépendante. En somme, ces résultats suggèrent que l’activation contrôlée de mTOR régule le déroulement de la maturation et la maintenance des synapses des BCs. Des dysfonctions de la neurotransmission GABAergique ont été impliquées dans des maladies telles que l’épilepsie et chez certains patients, elles sont associées avec des mutations du récepteur GABAA. De quelle façon ces mutations affectent le processus de maturation des BCs demeuret toutefois inconnu. Pour adresser cette question, nous avons utilisé la stratégie Cre-lox pour déléter le gène GABRA1, codant pour la sous-unité alpha-1 du récepteur GABAA dans une unique BC en culture organotypique. La perte de GABRA1 réduit l’étendue du champ d’innervation des BCs, suggérant que des variations dans les entrées inhibitrices en raison de l’absence de la sous-unité GABAAR α1 peuvent affecter le développement des BCs. La surexpression des sous-unités GABAAR α1 contenant des mutations identifiées chez des patients épileptiques ont montré des effets similaires en termes d’étendue du champ d’innervation des BCs. Pour approfondir, nous avons investigué les effets de ces mutations identifiées chez l’humain dans le développement des épines des neurones pyramidaux, lesquelles sont l’endroit privilégié pour la formation des synapses excitatrices. Somme toute, ces données montrent pour la première fois que différentes mutations de GABRA1 associées à des syndromes épileptiques peuvent affecter les épines dendritiques et la formation des boutons GABAergiques d’une façon mutation-spécifique.
Resumo:
Quelque 30 % de la population neuronale du cortex mammalien est composée d’une population très hétérogène d’interneurones GABAergiques. Ces interneurones diffèrent quant à leur morphologie, leur expression génique, leurs propriétés électrophysiologiques et leurs cibles subcellulaires, formant une riche diversité. Après leur naissance dans les éminences ganglioniques, ces cellules migrent vers les différentes couches corticales. Les interneurones GABAergiques corticaux exprimant la parvalbumin (PV), lesquels constituent le sous-type majeur des interneurones GABAergiques, ciblent spécifiquement le soma et les dendrites proximales des neurones principaux et des neurones PV+. Ces interneurones sont nommés cellules à panier (Basket Cells –BCs) en raison de la complexité morphologique de leur axone. La maturation de la connectivité distincte des BCs PV+, caractérisée par une augmentation de la complexité de l’axone et de la densité synaptique, se déroule graduellement chez la souris juvénile. Des travaux précédents ont commencé à élucider les mécanismes contrôlant ce processus de maturation, identifiant des facteurs génétiques, l’activité neuronale ainsi que l’expérience sensorielle. Cette augmentation marquante de la complexité axonale et de la synaptogénèse durant cette phase de maturation suggère la nécessité d’une synthèse de protéines élevée. La voie de signalisation de la cible mécanistique de la rapamycine (Mechanistic Target Of Rapamycin -mTOR) a été impliquée dans le contrôle de plusieurs aspects neurodéveloppementaux en régulant la synthèse de protéines. Des mutations des régulateurs Tsc1 et Tsc2 du complexe mTOR1 causent la sclérose tubéreuse (TSC) chez l’humain. La majorité des patients TSC développent des problèmes neurologiques incluant des crises épileptiques, des retards mentaux et l’autisme. D’études récentes ont investigué le rôle de la dérégulation de la voie de signalisation de mTOR dans les neurones corticaux excitateurs. Toutefois, son rôle dans le développement des interneurones GABAergiques corticaux et la contribution spécifique de ces interneurones GABAergiques altérés dans les manifestations de la maladie demeurent largement inconnus. Ici, nous avons investigué si et comment l’ablation du gène Tsc1 perturbe le développement de la connectivité GABAergique, autant in vitro que in vivo. Pour investiguer le rôle de l’activation de mTORC1 dans le développement d’une BC unique, nous avons délété le gène Tsc1 en transfectant CRE-GFP dirigé par un promoteur spécifique aux BCs dans des cultures organotypiques provenant de souris Tsc1lox. Le knockdown in vitro de Tsc1 a causé une augmentation précoce de la densité des boutons et des embranchements terminaux formés par les BCs mutantes, augmentation renversée par le traitement à la rapamycine. Ces données suggèrent que l’hyperactivation de la voie de signalisation de mTOR affecte le rythme de la maturation des synapses des BCs. Pour investiguer le rôle de mTORC1 dans les interneurones GABAergiques in vivo, nous avons croisé les souris Tsc1lox avec les souris Nkx2.1-Cre et PV-Cre. À P18, les souris Tg(Nkx2.1-Cre);Tsc1flox/flox ont montré une hyperactivation de mTORC1 et une hypertrophie somatique des BCs de même qu’une augmentation de l’expression de PV dans la région périsomatique des neurones pyramidaux. Au contraire, à P45 nous avons découvert une réduction de la densité des punctas périsomatiques PV-gephyrin (un marqueur post-synaptique GABAergique). L’étude de la morphologie des BCs en cultures organotypiques provenant du knock-out conditionnel Nkx2.1-Cre a confirmé l’augmentation initiale du rythme de maturation, lequel s’effondre ensuite aux étapes développementales tardives. De plus, les souris Tg(Nkx2.1Cre);Tsc1flox/flox montrent des déficits dans la mémoire de travail et le comportement social et ce d’une façon dose-dépendante. En somme, ces résultats suggèrent que l’activation contrôlée de mTOR régule le déroulement de la maturation et la maintenance des synapses des BCs. Des dysfonctions de la neurotransmission GABAergique ont été impliquées dans des maladies telles que l’épilepsie et chez certains patients, elles sont associées avec des mutations du récepteur GABAA. De quelle façon ces mutations affectent le processus de maturation des BCs demeuret toutefois inconnu. Pour adresser cette question, nous avons utilisé la stratégie Cre-lox pour déléter le gène GABRA1, codant pour la sous-unité alpha-1 du récepteur GABAA dans une unique BC en culture organotypique. La perte de GABRA1 réduit l’étendue du champ d’innervation des BCs, suggérant que des variations dans les entrées inhibitrices en raison de l’absence de la sous-unité GABAAR α1 peuvent affecter le développement des BCs. La surexpression des sous-unités GABAAR α1 contenant des mutations identifiées chez des patients épileptiques ont montré des effets similaires en termes d’étendue du champ d’innervation des BCs. Pour approfondir, nous avons investigué les effets de ces mutations identifiées chez l’humain dans le développement des épines des neurones pyramidaux, lesquelles sont l’endroit privilégié pour la formation des synapses excitatrices. Somme toute, ces données montrent pour la première fois que différentes mutations de GABRA1 associées à des syndromes épileptiques peuvent affecter les épines dendritiques et la formation des boutons GABAergiques d’une façon mutation-spécifique.
Resumo:
Background Ageing and type 2 diabetes mellitus (T2DM) are risk factors for skeletal muscle loss. We investigated whether anabolic resistance to feeding might underlie accelerated muscle loss in older people with T2DM and whether dysregulated mTOR signalling was implicated. Subjects 8 obese men with T2DM, and 12 age-matched controls were studied (age 68±3 vs. 68±6y; BMI: 30±2 vs. 27±5 kg·m-2). Methods Body composition was measured by dual-X-ray absorptiometry. Insulin and glucose were clamped at post-absorptive concentrations (13±2 vs. 9±3 mU·l-1; 7.4±1.9 vs. 4.6±0.4 mmol·l-1; T2DM vs. controls). Fractional synthetic rates (FSR) of myofibrillar and sarcoplasmic proteins were measured as the rate of incorporation of [13C] leucine during a primed, constant infusion of [1-13C] α-ketoisocaproic acid, 3 h after 10 or 20g of essential amino acids (EAA) were orally administered. Protein expression of total and phosphorylated mTOR signalling proteins was determined by Western blot analysis. Results Despite a significantly lower appendicular lean mass index and a greater fat mass index in T2DM vs. controls, basal myofibrillar and sarcoplasmic and post-prandial myofibrillar FSR were similar. After 20g EAA, stimulation of sarcoplasmic FSR was slightly blunted in T2DM patients. Furthermore, feeding 20g EAA increased phosphorylation of mTOR, p70S6k and 4E-BP1 by 60-100% in controls with no response observed in T2DM. Conclusions There was clear dissociation between changes in mTOR signalling versus changes in protein synthesis rates. However, the intact anabolic response of myofibrillar FSR to feeding in both groups suggests anabolic resistance may not explain accelerated muscle loss in T2DM.
Resumo:
Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/ mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation. J. Cell. Physiol. 226: 666-674, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT(1)R) is critically required to the development of T(3)-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT(1)R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT(1)R blocker (Losartan, 1 mu M) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T(3) (10 nM) treatment. The cardiomyocytes transfected with the AT(1)R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT(1)R. The AT(1)R silencing and the AT(1)R blockade totally prevented the T(3)-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T(3) demonstrated a rapid activation of Akt/GSK-3 beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 mu M and Wortmannin, 200 nM). In addition, we demonstrated that the AT(1)R mediated the T(3)-induced activation of Akt/GSK-3 beta/mTOR signaling pathway, since the AT(1)R silencing and the AT(1)R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT(1)R expression (180%, P < 0.05) were rapidly increased by T(3) treatment. These data demonstrate for the first time that the AT(1)R is a critical mediator to the T(3)-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3 beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T(3)-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT(1)R-Akt/GSK-3 beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T(3) in cardiomyocytes.