868 resultados para mCMV, B cell, Leishmania major


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the role of B cells in mCMV and Leishmania major infection. B cells are an essential component of the adaptive immune system and play a key role in the humoral immune response. In mCMV infection we analyzed the influence of B cells on the virus-specific CD8 T cell response, in detail the role of B cells as IL-10 secreting cells, as source of immunoglobulin (Ig) and as antigen presenting cells. In Leishmania major infection we investigated the role of Ig in Th1 and Th2 directed disease.rnWe found in mCMV infection that the B cell secreted IL-10 suppresses effectively the acute virus-specific CD8 T cell response, while the IL-10 secreted by dendritic cell has no obvious effect. Ig has no effect in the acute virus-specific CD8 T cell response, but in memory response Ig is essential. If Ig is missing the CD8 T cell population remains high in memory response 135 days post infection. The complete absence of B cells dramatically reduces the acute virus-specific CD8 T cell response, while B cell reconstitution just partially rescues this dramatic reduction. A comparison of this reduction in a B cell free organism to an organism with depleted dendritic cells gave a similar result. To exclude a malfunction of the CD8 T cells in the B cell deficient mice, the decreased virus-specific CD8 T cell population was confirmed in a B cell depletion model. Further, bone marrow chimeras with a B cell compartment deficient for CD40-/- showed a decrease of the virus-specific response and an involvement of CD40 on B cells. Taken together these results suggest a role for B cells in antigen presentation during mCMV infection.rnFurther we took advantage of the altered mCMV specific CD8 T cell memory response in mice without Ig to investigate the memory inflation of CD8 T cells specific for distinct mCMV specifc peptides. Using a SIINFEKL-presenting virus system, we were able to shorten the time until the memory inflation occurs and show that direct presentation stimulates the memory inflation. rnIn Leishmania major infection, Ig of Th2 balanced BALB/c mice has a central role in preventing a systemic infection, although the ear lesions are smaller in IgMi mice without specific Ig. Here the parasite loads of ears and spleen are elevated, and an IMS-reconstitution does not affect the parasite load. In contrast in Th1 balanced C57BL/6 mice, reconstitution of IgMi mice with serum of either untreated or immunized mice decreased the parasite load of spleen and ear, further IMS treatment reduces the size of the spleen and the cytokine-levels of IL-10, IL-4, IL-2 and IFN-γ to a level comparable to wt mice. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fumarate hydratases (FHs; EC 4.2.1.2) are enzymes that catalyze the reversible hydration of fumarate to S-malate. Parasitic protists that belong to the genus Leishmania and are responsible for a complex of vector-borne diseases named leishmaniases possess two genes that encode distinct putative FH enzymes. Genome sequence analysis of Leishmania major Friedlin reveals the existence of genes LmjF24.0320 and LmjF29.1960 encoding the putative enzymes LmFH-1 and LmFH-2, respectively. In the present work, the FH activity of both L. major enzymes has been confirmed. Circular dichroism studies suggest important differences in terms of secondary structure content when comparing LmFH isoforms and even larger differences when comparing them to the homologous human enzyme. CD melting experiments revealed that both LmFH isoforms are thermolabile enzymes. The catalytic efficiency under aerobic and anaerobic environments suggests that they are both highly sensitive to oxidation and damaged by oxygen. Intracellular localization studies located LmFH-1 in the mitochondrion, whereas LmFH-2 was found predominantly in the cytosol with possibly also some in glycosomes. The high degree of sequence conservation in different Leishmania species, together with the relevance of FH activity for the energy metabolism in these parasites suggest that FHs might be exploited as targets for broad-spectrum antileishmanial drugs. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First both life stages of Leishmania major (L. major) FEBNI parasites, promastigotes as well as amastigotes, were characterized. We found that the virulence marker GP63 and cysteine peptidase b (Cpb) were higher expressed by axenic amastigotes as compared to promastigotes. In addition to the L. major FEBNI strain, we applied and successfully modified our novel in vitro method to generate axenic amastigotes of the L. major Friedlin and 5ASKH strains. Interestingly, these L. major strains needed another temperature to be transferred into amastigotes in the axenic culture system. Investigating apoptosis mechanisms in both parasite life stages of L. major FEBNI we found both ROS dependent and independent cell death mechanisms. Focusing on promastigote and amastigote interaction with pro-inflammatory (MF I) and anti-inflammatory (MF II) macrophages we found amastigotes to be more infective as compared to promastigotes. Moreover, we could demonstrate that pro-inflammatory MF I were less susceptible to infection than anti-inflammatory MF II. Finally we investigated parasite stage-specific responses of MF I + II and their defense mechanisms against L. major. Using knockdown techniques for primary human macrophages we identified a new mechanism enabling intracellular killing of promastigotes inside MF I. This mechanism depends on the antimicrobial molecule cathelicidin (LL-37).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epidermal growth factor (EGF) family of receptors (EGFR) is overproduced in estrogen receptor (ER) negative (−) breast cancer cells. An inverse correlation of the level of EGFR and ER is observed between ER− and ER positive (+) breast cancer cells. A comparative study with EGFR-overproducing ER− and low-level producing ER+ breast cancer cells suggests that EGF is a major growth-stimulating factor for ER− cells. An outline of the pathway for the EGF-induced enhanced proliferation of ER− human breast cancer cells is proposed. The transmission of mitogenic signal induced by EGF–EGFR interaction is mediated via activation of nuclear factor κB (NF-κB). The basal level of active NF-κB in ER− cells is elevated by EGF and inhibited by anti-EGFR antibody (EGFR-Ab), thus qualifying EGF as a NF-κB activation factor. NF-κB transactivates the cell-cycle regulatory protein, cyclin D1, which causes increased phosphorylation of retinoblastoma protein, more strongly in ER− cells. An inhibitor of phosphatidylinositol 3 kinase, Ly294–002, blocked this event, suggesting a role of the former in the activation of NF-κB by EGF. Go6976, a well-characterized NF-κB inhibitor, blocked EGF-induced NF-κB activation and up-regulation of cell-cycle regulatory proteins. This low molecular weight compound also caused apoptotic death, predominantly more in ER− cells. Thus Go6976 and similar NF-κB inhibitors are potentially novel low molecular weight therapeutic agents for treatment of ER− breast cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of unknown cause that afflicts the central nervous system. MS is typified by a highly clonally restricted antigen-driven antibody response that is confined largely to the central nervous system. The major antigenic targets of this response and the role of antibody in disease pathogenesis remain unclear. To help resolve these issues, we cloned the IgG repertoire directly from active plaque and periplaque regions in MS brain and from B cells recovered from the cerebrospinal fluid of a patient with MS with subacute disease. We found that high-affinity anti-DNA antibodies are a major component of the intrathecal IgG response in the patients with MS that we studied. Furthermore, we show DNA-specific monoclonal antibodies rescued from two subjects with MS as well as a DNA-specific antibody rescued from an individual suffering from systemic lupus erythematosus bound efficiently to the surface of neuronal cells and oligodendrocytes. For two of these antibodies, cell-surface recognition was DNA dependent. Our findings indicate that anti-DNA antibodies may promote important neuropathologic mechanisms in chronic inflammatory disorders, such as MS and systemic lupus erythematosus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful treatment in allergic, autoimmune, and infectious diseases often requires altering the nature of a detrimental immune response mediated by a particular CD4+ T helper (Th) cell subset. While several factors contribute to the development of CD4+ Th1 and Th2 cells, the requirements for switching an established response are not understood. Here we use infection with Leishmania major as a model to investigate those requirements. We report that treatment with interleukin 12 (IL-12), in combination with the antimony-based leishmanicidal drug Pentostam, induces healing in L. major-infected mice and that healing is associated with a switch from a Th2 to a Th1 response. The data suggest that decreasing antigen levels may be required for IL-12 to inhibit a Th2 response and enhance a Th1 response. These observations are important for treatment of nonhealing forms of human leishmaniasis and also demonstrate that in a chronic infectious disease an inappropriate Th2 response can be switched to an effective Th1 response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-transplantation lymphoproliferative disorders (PTLD) arise in the immunosuppressed and are frequently Epstein-Barr virus (EBV) associated. The most common PTLD histological sub-type is diffuse large B-cell lymphoma (EBV+DLBCL-PTLD). Restoration of EBV-specific T-cell immunity can induce EBV+DLBCL-PTLD regression. The most frequent B-cell lymphoma in the immunocompetent is also DLBCL. ‘EBV-positive DLBCL of the elderly’ (EBV+DLBCL) is a rare but well-recognized DLBCL entity that occurs in the overtly immunocompetent, that has an adverse outcome relative to EBV-negative DLBCL. Unlike PTLD (which is classified as viral latency III), literature suggests EBV+DLBCL is typically latency II, i.e. expression is limited to the immuno-subdominant EBNA1, LMP1 and LMP2 EBV-proteins. If correct, this would be a major impediment for T-cell immunotherapeutic strategies. Unexpectedly we observed EBV+DLBCL-PTLD and EBV+DLBCL both shared features consistent with type III EBV-latency, including expression of the immuno-dominant EBNA3A protein. Extensive analysis showed frequent polymorphisms in EBNA1 and LMP1 functionally defined CD8+ T-cell epitope encoding regions, whereas EBNA3A polymorphisms were very rare making this an attractive immunotherapy target. As with EBV+DLBCL-PTLD, the antigen presenting machinery within lymphomatous nodes was intact. EBV+DLBCL express EBNA3A suggesting it is amenable to immunotherapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffuse large B-cell lymphoma (DLBCL) is the most common of the non-Hodgkin lymphomas. As DLBCL is characterized by heterogeneous clinical and biological features, its prognosis varies. To date, the International Prognostic Index has been the strongest predictor of outcome for DLBCL patients. However, no biological characters of the disease are taken into account. Gene expression profiling studies have identified two major cell-of-origin phenotypes in DLBCL with different prognoses, the favourable germinal centre B-cell-like (GCB) and the unfavourable activated B-cell-like (ABC) phenotypes. However, results of the prognostic impact of the immunohistochemically defined GCB and non-GCB distinction are controversial. Furthermore, since the addition of the CD20 antibody rituximab to chemotherapy has been established as the standard treatment of DLBCL, all molecular markers need to be evaluated in the post-rituximab era. In this study, we aimed to evaluate the predictive value of immunohistochemically defined cell-of-origin classification in DLBCL patients. The GCB and non-GCB phenotypes were defined according to the Hans algorithm (CD10, BCL6 and MUM1/IRF4) among 90 immunochemotherapy- and 104 chemotherapy-treated DLBCL patients. In the chemotherapy group, we observed a significant difference in survival between GCB and non-GCB patients, with a good and a poor prognosis, respectively. However, in the rituximab group, no prognostic value of the GCB phenotype was observed. Likewise, among 29 high-risk de novo DLBCL patients receiving high-dose chemotherapy and autologous stem cell transplantation, the survival of non-GCB patients was improved, but no difference in outcome was seen between GCB and non-GCB subgroups. Since the results suggested that the Hans algorithm was not applicable in immunochemotherapy-treated DLBCL patients, we aimed to further focus on algorithms based on ABC markers. We examined the modified activated B-cell-like algorithm based (MUM1/IRF4 and FOXP1), as well as a previously reported Muris algorithm (BCL2, CD10 and MUM1/IRF4) among 88 DLBCL patients uniformly treated with immunochemotherapy. Both algorithms distinguished the unfavourable ABC-like subgroup with a significantly inferior failure-free survival relative to the GCB-like DLBCL patients. Similarly, the results of the individual predictive molecular markers transcription factor FOXP1 and anti-apoptotic protein BCL2 have been inconsistent and should be assessed in immunochemotherapy-treated DLBCL patients. The markers were evaluated in a cohort of 117 patients treated with rituximab and chemotherapy. FOXP1 expression could not distinguish between patients, with favourable and those with poor outcomes. In contrast, BCL2-negative DLBCL patients had significantly superior survival relative to BCL2-positive patients. Our results indicate that the immunohistochemically defined cell-of-origin classification in DLBCL has a prognostic impact in the immunochemotherapy era, when the identifying algorithms are based on ABC-associated markers. We also propose that BCL2 negativity is predictive of a favourable outcome. Further investigational efforts are, however, warranted to identify the molecular features of DLBCL that could enable individualized cancer therapy in routine patient care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because only 10% of individuals infected with Mycobacterium tuberculosis will eventually develop disease, antigens that are recognized differently by the immune systems of infected healthy and diseased subjects may constitute potential vaccine candidates. Here, the heparin-binding hemagglutinin adhesin (HBHA) is identified as such an antigen. Lymphocytes from 60% of healthy infected individuals (n=25) produced interferon (IFN)-gamma after stimulation with HBHA, compared with only 4% of patients with active tuberculosis (n=24). In the responders, both CD4(+) and CD8(+) cells secreted HBHA-specific IFN-gamma, and the antigen was presented by both major histocompatibility complex class I and II molecules. In contrast to the reduced ability of patients with tuberculosis to produce HBHA-specific IFN-gamma, most of them (82%) produced anti-HBHA antibodies, compared with 36% of the infected healthy subjects. These observations indicate that HBHA is recognized differently by the immune systems of patients with tuberculosis and infected healthy individuals and might provide a marker for protection against tuberculosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms responsible for the generation and maintenance of immunological memory to Plasmodium are poorly understood and the reasons why protective immunity in humans is so difficult to achieve and rapidly lost remain a matter for debate. A possible explanation for the difficulty in building up an efficient immune response against this parasite is the massive T cell apoptosis resulting from exposure to high-dose parasite Ag. To determine the immunological mechanisms required for long-term protection against P. chabaudi malaria and the consequences of high and low acute phase parasite loads for acquisition of protective immunity, we performed a detailed analysis of T and B cell compartments over a period of 200 days following untreated and drug-treated infections in female C57BL/6 mice. By comparing several immunological parameters with the capacity to control a secondary parasite challenge, we concluded that loss of full protective immunity is not determined by acute phase parasite load nor by serum levels of specific IgG2a and IgG1. Abs, but appears to be a consequence of the progressive decline in memory T cell response to parasites, which occurs similarly in untreated and drug-treated mice with time after infection. Furthermore, by analyzing adoptive transfer experiments, we confirmed the major role of CD4(+) T cells for guaranteeing long-term full protection against P. chabaudi malaria. The Journal of Immunology, 2008, 181: 8344-8355.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cysteine metabolism exhibits atypical features in Leishmania parasites. The nucleotide sequence annotated as LmjF32.2640 encodes a cysteine desulfhydrase, which specifically catalyzes the breakdown of cysteine into pyruvate, NH(3) and H(2)S. Like in other pathogens, this capacity might be associated with regulatory mechanisms to control the intracellular level of cysteine, a highly toxic albeit essential amino acid, in addition to generate pyruvate for energy production. Besides, our results provide the first insight into the biochemical properties of Leishmania major serine acetyltransferase (SAT), which is likely involved in the two routes for de novo synthesis of cysteine in this pathogen. When compared with other members of SAT family, the N-terminal region of L. major homologue is uniquely extended, and seems to be essential for proper protein folding. Furthermore, unlike plant and bacterial enzymes, the carboxy-terminal-C(10) sequence stretch of L major SAT appears not to be implicated in forming a tight bi-enzyme complex with cysteine synthase. (C) 2010 Elsevier B.V. All rights reserved.