982 resultados para luteinizing hormone release
Resumo:
Because ascorbic acid (AA) is concentrated in synaptic vesicles containing glutamic acid, we hypothesized that AA might act as a neurotransmitter. Because AA is an antioxidant, it might therefore inhibit nitric oxidergic (NOergic) activation of luteinizing hormone-releasing hormone (LH-RH) release from medial basal hypothalamic explants by chemically reducing NO. Cell membrane depolarization induced by increased potassium concentration [K+] increased medium concentrations of both AA and LH-RH. An inhibitor of NO synthase (NOS), NG-monomethyl-l-arginine (NMMA), prevented the increase in medium concentrations of AA and LH-RH induced by high [K+], suggesting that NO mediates release of both AA and LH-RH. Calcium-free medium blocked not only the increase in AA in the medium but also the release of LH-RH. Sodium nitroprusside, which releases NO, stimulated LH-RH release and decreased the concentration of AA in the incubation medium, presumably because the NO released oxidized AA to dehydro-AA. AA (10−5 to 10−3 M) had no effect on basal LH-RH release but completely blocked high [K+]- and nitroprusside-induced LH-RH release. N-Methyl-d-aspartic acid (NMDA), which mimics the action of the excitatory amino acid neurotransmitter glutamic acid, releases LH-RH by releasing NO. AA (10−5 to 10−3 M) inhibited the LH-RH-releasing action of NMDA. AA may be an inhibitory neurotransmitter that blocks NOergic stimulation of LH-RH release by chemically reducing the NO released by the NOergic neurons.
Resumo:
Nitric oxide synthase (NOS)-containing neurons, termed NOergic neurons, occur in various regions of the hypothalamus, including the median eminence-arcuate region, which plays an important role in controlling the release of luteinzing hormone-releasing hormone (LHRH). We examined the effect of NO on release of gamma-aminobutyric acid (GABA) from medial basal hypothalamic (MBH) explants incubated in vitro. Sodium nitroprusside (NP) (300 microM), a spontaneous releaser of NO, doubled the release of GABA. This release was significantly reduced by incubation of the tissue with hemoglobin, a scavenger of NO, whereas hemoglobin alone had no effect on the basal release of GABA. Elevation of the potassium concentration (40 mM) in the medium increased GABA release 15-fold; this release was further augmented by NP. Hemoglobin blocked the increase in GABA release induced by NP but had no effect on potassium-induced release, suggesting that the latter is not related to NO. As in the case of hemoglobin, NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, had no effect on basal release of GABA, which indicates again that NO is not significant to basal GABA release. However, NMMA markedly inhibited the release of GABA induced by high potassium, which indicates that NO plays a role in potassium-induced release of GABA. In conditions in which the release of GABA was substantially augmented, there was a reduction in GABA tissue stores as well, suggesting that synthesis of GABA in these conditions did not keep up with release of the amine. Although NO released GABA, there was no effect of the released GABA on NO production, for incubation of MBH explants with GABA had no effect on NO release as measured by [14C]citrulline production. To determine whether GABA had any effect on the release of LHRH from these MBH explants, GABA was incubated with the tissue and the effect on LHRH release was determined. GABA (10(-5) or 10(-6) M) induced a 70% decrease in the release of LHRH, indicating that in the male rat GABA inhibits the release of this hypothalamic peptide. This inhibition in LHRH release induced by GABA was blocked by NMMA (300 microM), which indicates that GABA converts the stimulatory effect of NO on LHRH release into an inhibitory one, presumably via GABA receptors, which activate chloride channels that hyperpolarize the cell. Previous results have indicated that norepinephrine stimulates release of NO from the NOergic neurons, which then stimulates the release of LHRH. The current results indicate that the NO released also induces release of GABA, which then inhibits further LHRH release. Thus, in vivo the norepinephrinergic-driven pulses of LHRH release may be terminated by GABA released from GABAergic neurons via NO.
Resumo:
This study evaluated whether the four gonadorelin products that are commercially available in the United States produce comparable ovulation responses in lactating cows. Dairy cows at 7 d after last gonadotropin-releasing hormone (GnRH) treatment of Ovsynch (Day 7), with a corpus luteum (CL) >= 15 mm and at least one follicle >= 10 mm, were evaluated for response to GnRH treatment. Selected cows were randomized to receive (100 mu g; im): (1) Cystorelin (n = 146): (2) Factrel (n = 132): (3) Fertagyl (n = 140); or (4) Ovacyst (n = 140). On Day 14, cows were examined for Ovulation by detection of an accessory CL. Circulating luteinizing hormone (LH) concentrations were also evaluated in some cows after treatment with 100 mu g (n = 10 per group) or 50 mu g (n = 5 per group) GnRH. Statistical analyses were performed with the procedures MIXED and GLIMMIX of the SAS program. Percentage of cows ovulating differed (P < 0.01) among groups, with that for Factrel being lower (55.3%) than that for Cystorelin (76.7%), Fertagyl (73.6%), or Ovacyst (85.0%), There was no effect of batch, parity, or follicle size on ovulation response. but increasing body condition score decreased Ovulation response. There was a much greater LH release in cows treated with 100 mu g than in those treated with 50 mu g, but there were no detectable differences among products in time to LH peak, peak LH concentration, or area under the LH curve and no treatment effects nor treatment by time interactions on circulating LH profile. Thus, ovulation response to Factrel on Day 7 of the cycle was lower than that for other commercial GnRH products, although a definitive mechanism for this difference between products was not demonstrated. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Administration of ghrelin, a key peptide in the regulation of energy homeostasis, has been shown to decrease LH pulse frequency while concomitantly elevating cortisol levels. Because increased endogenous CRH release in stress is associated with an inhibition of reproductive function, we have tested here whether the pulsatile LH decrease after ghrelin may reflect an activated hypothalamic-pituitary-adrenal axis and be prevented by a CRH antagonist. After a 3-h baseline LH pulse frequency monitoring, five adult ovariectomized rhesus monkeys received a 5-h saline (protocol 1) or ghrelin (100-microg bolus followed by 100 microg/h, protocol 2) infusion. In protocols 3 and 4, animals were given astressin B, a nonspecific CRH receptor antagonist (0.45 mg/kg im) 90 min before ghrelin or saline infusion. Blood samples were taken every 15 min for LH measurements, whereas cortisol and GH were measured every 45 min. Mean LH pulse frequency during the 5-h ghrelin infusion was significantly lower than in all other treatments (P < 0.05) and when compared with the baseline period (P < 0.05). Pretreatment with astressin B prevented the decrease. Ghrelin stimulated cortisol and GH secretion, whereas astressin B pretreatment prevented the cortisol, but not the GH, release. Our data indicate that CRH release mediates the inhibitory effect of ghrelin on LH pulse frequency and suggest that the inhibitory impact of an insufficient energy balance on reproductive function may in part be mediated by the hypothalamic-pituitary-adrenal axis.
Resumo:
RESUME : La ghrelin est un peptide sécrété par l'estomac jouant un rôle important dans le maintien de l'homéostasie énergétique. Ses taux plasmatiques sont augmentés durant des périodes prolongées de déficit nutritionnel. Une carence énergétique étant souvent associée à une inhibition de l'axe hypothalamo-hypophyso-ovarien, nous avons postulé que l'augmentation des taux circulant de ghrelin pourrait diminuer l'activité du générateur hypothalamique de pulsations de GnRH. Le protocole expérimental impliquait des singes rhésus adultes ovariectomisés (n=6) qui dans un premier temps recevaient durant 3 heures une perfusion de solution saline physiologique afin de mesurer la sécrétion pulsatile de LH à l'état basai. L'expérience se poursuivait alors durant 5 heures par une perfusion intraveineuse de ghrelin humaine (un bolus de 100-150µg suivi par 100-150µg/h) ou le maintien de la perfusion de solution saline physiologique. Des échantillons de sang étaient prélevés toutes les 15 minutes. La perfusion de ghrelin a augmenté ses taux plasmatiques de 2.9 fois par rapport aux valeurs de base. L'administration de ghrelin a significativement diminué la fréquence des pulsations de LH (de 0.89±0.07/h à l'état basai à 0.57±0.10/h durant la perfusion de ghrelin; p<0.05, moyenne±SEM), alors que la fréquence des pulsations de LH est restée inchangée durant la perfusion de solution physiologique. L'amplitude des pulsations de LH n'a pas été modifiée. La ghrelin a également stimulé de manière significative la sécrétion de cortisol et d'hormone de croissance, mais n'a toutefois pas eu d'effet sur la sécrétion de leptin. En conclusion, la ghrelin peut inhiber l'activité du générateur de pulsations de GnRH et pourrait ainsi contribuer à l'inhibition de l'axe de la reproduction observée durant des périodes de carence nutritionnelle, comme notamment chez les patientes souffrant d'anorexie mentale. La ghrelin peut également activer l'axe hypothalamo-hypophyso-surrénalien. Le lien dans cette situation entre l'activation de l'axe surrénalien et l'inhibition de l'axe de la reproduction reste à démontrer. ABSTRACT: Ghrelin, a nutrition-related peptide secreted by the stomach, is elevated during prolonged food deprivation. Because undernutrition is often associated with a suppressed reproductive axis, we have postulated that increasing peripheral ghrelin levels will decrease the activity of the GnRH pulse generator. Adult ovariectomized rhesus monkeys (n = 6) were subjected to a 5-h iv human ghrelin (100- to 150µg bolus followed by 100-150 µg/h) or saline infusion, preceded by a 3-h saline infusion to establish baseline pulsatile LH release. Blood samples were collected at 15-min intervals throughout the experiment. Ghrelin infusion increased plasma ghrelin levels 2.9-fold of baseline. Ghrelin significantly decreased LH pulse frequency (from 0.89 ± 0.07/h in baseline to 0.57 ± 0.10/h during ghrelin infusion; P<0.05, mean ± SEM), whereas LH pulse frequency remained unchanged during saline treatment. LH pulse amplitude was not affected. Ghrelin also significantly stimulated both Cortisol and GH release, but had no effect on leptin. We conclude that ghrelin can inhibit GnRH pulse activity and may thereby mediate the suppression of the reproductive system observed in conditions of undernutrition, such as in anorexia nervosa. Ghrelin also activates the adrenal axis, but the relevance of this to the inhibition of GnRH pulse frequency remains to be established.
Resumo:
We have observed that intracerebroventricular (icv) injection of selective N-methyl-D-aspartic acid (NMDA)-type glutamatergic receptor antagonists inhibits lordosis in ovariectomized (OVX), estrogen-primed rats receiving progesterone or luteinizing hormone-releasing hormone (LHRH). When NMDA was injected into OVX estrogen-primed rats, it induced a significant increase in lordosis. The interaction between LHRH and glutamate was previously explored by us and another groups. The noradrenergic systems have a functional role in the regulation of LHRH release. The purpose of the present study was to explore the interaction between glutamatergic and noradrenergic transmission. The action of prazosin, an alpha1- and alpha2b-noradrenergic antagonist, was studied here by injecting it icv (1.75 and 3.5 µg/6 µL) prior to NMDA administration (1 µg/2 µL) in OVX estrogen-primed Sprague-Dawley rats (240-270 g). Rats manually restrained were injected over a period of 2 min, and tested 1.5 h later. The enhancing effect induced by NMDA on the lordosis/mount ratio at high doses (67.06 ± 3.28, N = 28) when compared to saline controls (6 and 2 µL, 16.59 ± 3.20, N = 27) was abolished by prazosin administration (17.04 ± 5.52, N = 17, and 9.33 ± 3.21, N = 20, P < 0.001 for both doses). Plasma LH levels decreased significantly only with the higher dose of prazosin (1.99 ± 0.24 ng/mL, N = 18, compared to saline-NMDA effect, 5.96 ± 2.01 ng/mL, N = 13, P < 0.05). Behavioral effects seem to be more sensitive to the alpha-blockade than hormonal effects. These findings strongly suggest that the facilitatory effects of NMDA on both lordosis and LH secretion in this model are mediated by alpha-noradrenergic transmission.
Resumo:
The hypothalamus in the lower part of the brain contains neurons that produce a small peptide, gonadotropin- releasing hormone (GnRH, LHRH), that regulates luteinizing hormone (LH) secretion by the anterior pituitary gland. Important functions of LH include induction of ovulation in preovulatory follicles during estrus and the luteinization of granulosa cells lining those collapsed follicles to form corpora lutea that produce progesterone during the luteal phase of the estrous cycle or during pregnancy. The production of progesterone by the corpus luteum conveys a negative feed-back action at the central nervous system (CNS) for further episodic secretion of GnRH and in turn, LH secretion. Gonadal removal (i.e., ovariectomy) allows a greater amount of LH secretion to occur during a prolonged period. The objectives of this study were to characterize the pattern of GnRH secretion in the cerebrospinal fluid (CSF) of the bovine third ventricle region of the hypothalamus, determine its correspondence with the tonic and surge release of LH in ovariectomized cows, and examine the dynamics of GnRH pulse release activity in response to known modulators of LH release (suckling, neuropeptide-Y [NPY]). In ovariectomized cows, both tonic release patterns and estradiol-induced surges of GnRH and LH were highly correlated. A 500-microgram dose of NPY caused an immediate cessation of LH pulses and decreased plasma concentrations of LH for at least 4 hours. This corresponded with a decrease in both GnRH pulse amplitude and frequency. In anestrous cows, GnRH pulse frequency did not change before and 48 to 54 hours after weaning on day 18 postpartum, but GnRH concentration and amplitudes of GnRH pulses increased in association with weaning and heightened secretion of LH. It is clear that high-frequency, highamplitude pulses of LH are accompanied by similar patterns of GnRH in CSF of adult cattle. Yet strong inhibitors of LH pulsatility, putatively acting at the level of the central nervous system (i.e., suckling) or at both the central nervous system and pituitary (NPY) levels, produced periods of discordance between GnRH and LH pulses.
Resumo:
The adult male golden hamster, when exposed to blinding (BL), short photoperiod (SP), or daily melatonin injections (MEL) demonstrates dramatic reproductive collapse. This collapse can be blocked by removal of the pineal gland prior to treatment. Reproductive collapse is characterized by a dramatic decrease in both testicular weight and serum gonadotropin titers. The present study was designed to examine the interactions of the hypothalamus and pituitary gland during testicular regression, and to specifically compare and contrast changes caused by the three commonly employed methods of inducing testicular regression (BL,SP,MEL). Hypothalamic LHRH content was altered by all three treatments. There was an initial increase in content of LHRH that occurred concomitantly with the decreased serum gonadotropin titers, followed by a precipitous decline in LHRH content which reflected the rapid increases in both serum LH and FSH which occur during spontaneous testicular recrudescence. In vitro pituitary responsiveness was altered by all three treatments: there was a decline in basal and maximally stimulatable release of both LH and FSH which paralleled the fall of serum gonadotropins. During recrudescence both basal and maximal release dramatically increased in a manner comparable to serum hormone levels. While all three treatments were equally effective in their ability to induce changes at all levels of the endocrine system, there were important temporal differences in the effects of the various treatments. Melatonin injections induced the most rapid changes in endocrine parameters, followed by exposure to short photoperiod. Blinding required the most time to induce the same changes. This study has demonstrated that pineal-mediated testicular regression is a process which involves dynamic changes in multiply-dependent endocrine relationships, and proper evaluation of these changes must be performed with specific temporal events in mind. ^
Resumo:
Nicotine at very low doses (5–30 nM) induced large amounts of luteinizing hormone-releasing hormone (LHRH) release, which was monitored as slow membrane depolarizations in the ganglionic neurons of bullfrog sympathetic ganglia. A nicotinic antagonist, d-tubocurarine chloride, completely and reversibly blocked the nicotine-induced LHRH release, but it did not block the nerve-firing-evoked LHRH release. Thus, nicotine activated nicotinic acetylcholine receptors and produced LHRH release via a mechanism that is different from the mechanism for evoked release. Moreover, this release was not caused by Ca2+ influx through either the nicotinic receptors or the voltage-gated Ca2+ channels because the release was increased moderately when the extracellular solution was changed into a Ca2+-free solution that also contained Mg2+ (4 mM) and Cd2+ (200 μM). The release did not depend on Ca2+ release from the intraterminal Ca2+ stores either because fura-2 fluorimetry showed extremely low Ca2+ elevation (≈30 nM) in response to nicotine (30 nM). Moreover, nicotine evoked LHRH release when [Ca2+] elevation in the terminals was prevented by loading the terminals with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid and fura-2. Instead, the nicotine-induced release required extracellular Na+ because substitution of extracellular NaCl with N-methyl-d-glucamine chloride completely blocked the release. The Na+-dependent mechanism was not via Na+ influx through the voltage-gated Na+ channels because the release was not affected by tetrodotoxin (1–50 μM) plus Cd2+ (200 μM). Thus, nicotine at very low concentrations induced LHRH release via a Na+-dependent, Ca2+-independent mechanism.
Resumo:
It has previously been shown that alcohol can suppress reproduction in humans, monkeys, and small rodents by inhibiting release of luteinizing hormone (LH). The principal action is via suppression of the release of LH-releasing hormone (LHRH) both in vivo and in vitro. The present experiments were designed to determine the mechanism by which alcohol inhibits LHRH release. Previous research has indicated that the release of LHRH is controlled by nitric oxide (NO). The proposed pathway is via norepinephrine-induced release of NO from NOergic neurons, which then activates LHRH release. In the present experiments, we further evaluated the details of this mechanism in male rats by incubating medial basal hypothalamic (MBH) explants in vitro and examining the release of NO, prostaglandin E2 (PGE2), conversion of arachidonic acid to prostanoids, and production of cGMP. The results have provided further support for our theory of LHRH control. Norepinephrine increased the release of NO as measured by conversion of [14C]arginine to [14C]citrulline, and this increase was blocked by the alpha 1 receptor blocker prazosin. Furthermore, the release of LHRH induced by nitroprusside (NP), a donor of NO, is related to the activation of soluble guanylate cyclase by NO since NP increased cGMP release from MBHs and cGMP also released LHRH. Ethanol had no effect on the production of NO by MBH explants or the increased release of NO induced by norepinephrine. Therefore, it does not act at that step in the pathway. Ethanol also failed to affect the increase in cGMP induced by NP. On the other hand, as might be expected from previous experiments indicating that LHRH release was brought about by PGE2, NP increased the conversion of [14C]arachidonic acid to its metabolites, particularly PGE2. Ethanol completely blocked the release of LHRH induced by NP and the increase in PGE2 induced by NP. Therefore, the results support the theory that norepinephrine acts to stimulate NO release from NOergic neurons. This NO diffuses to the LHRH terminals where it activates guanylate cyclase, leading to an increase in cGMP. At the same time, it also activates cyclooxygenase. The increase in cGMP increases intracellular free calcium, activating phospholipase A2 to provide arachidonic acid, the substrate for conversion by the activated cyclooxygenase to PGE2, which then activates the release of LHRH. Since alcohol inhibits the conversion of labeled arachidonic acid to PGE2, it must act either directly to inhibit cyclooxygenase or perhaps it may act by blocking the increase in intracellular free calcium induced by cGMP, which is crucial for activation of of both phospholipase A2 and cyclooxygenase.
Resumo:
Context: Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. Objective: A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. Design and Setting: The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. Patients or Other Participants: 345 probands, 18 family members, and 292 controls were studied. Intervention: Reproductive phenotypes throughout reproductive life and before and after therapy were examined. Main Outcome Measure: Rare sequence variants in TAC3/TACR3 were detected. Results: In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. Conclusions: Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time. (J Clin Endocrinol Metab 95: 2857-2867, 2010)
Resumo:
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)]; transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20 mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: The activity of the neuroendocrine reproductive axis is closely related to nutritional status. This link is particularly important in healthy women, in whom insulin is a positive signal for the reproductive system. In contrast, very little is known regarding this relation in men. OBJECTIVES: This study was designed to evaluate the effect of insulin on the reproductive axis of young male volunteers and to study the effect of short-term hypercaloric feeding on this modulation. DESIGN: The activity of the neuroendocrine reproductive axis was characterized by the pattern of endogenous luteinizing hormone (LH) secretion on the basis of frequent blood sampling protocols. The effect of insulin was tested by comparing the LH secretion pattern between a baseline study and a hyperinsulinemic euglycemic clamp. These studies were performed first in subjects fed a controlled isocaloric diet for 6 d (calculated as 1.5 times their resting metabolic rate) then in the same subjects fed a controlled hypercaloric diet in which 30% extra calories were provided as fat and fructose (3 g · kg(-1) · d(-1)) before undergoing identical protocols. Serum gonadotropins, sex steroids, glucose, insulin, ghrelin, and leptin concentrations were assessed, and the HOMA-IR was calculated. RESULTS: The LH secretion pattern was not affected by insulin or by hypercaloric feeding. Insulin decreased ghrelin and increased leptin concentrations but had no additional effect of hypercaloric feeding despite significantly lower HOMA-IR indexes. CONCLUSIONS: Our data indicate that neither insulin nor short-term hypercaloric feeding has any effect on the activity of the male reproductive axis. They also further support the association between ghrelin and insulin and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT01058681.
Resumo:
BACKGROUND: Bariatric surgery markedly improves glucose homeostasis in patients with type 2 diabetes even before any significant weight loss is achieved. Procedures that involve bypassing the proximal small bowel, such as Roux-en-Y gastric bypass (RYGBP), are more efficient than gastric restriction procedures such as gastric banding (GB). OBJECTIVE: To evaluate the effects of RYGBP and GB on postprandial glucose kinetics and gastro-intestinal hormone secretion after an oral glucose load. METHODS AND PROCEDURES: This study was a cross-sectional comparison among non-diabetic, weight-stable women who had undergone RYGBP (n = 8) between 9 and 48 months earlier or GB (n = 6) from 25 to 85 months earlier, and weight- and age-matched control subjects (n = 8). The women were studied over 4 h following ingestion of an oral glucose load. Total glucose and meal glucose kinetics were assessed using glucose tracers and plasma insulin, and gut hormone concentrations were simultaneously monitored. RESULTS: Patients who had undergone RYGBP showed a a more rapid appearance of exogenous glucose in the systemic circulation and a shorter duration of postprandial hyperglycemia than patients who had undergone GB and C. The response in RYGBP patients was characterized by early and accentuated insulin response, enhanced postprandial levels of glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY), and greater postprandial suppression of ghrelin. DISCUSSION: These findings indicate that RYGBP is associated with alterations in glucose kinetics and glucoregulatory hormone secretion. These alterations are probably secondary to the anatomic rearrangement of the foregut, given the fact that they are not observed after GB. Increased PYY and GLP-1 concentrations and enhanced ghrelin suppression are compatible with reduced food intake after RYGBP.