992 resultados para luteal phase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female bonnet monkeys were injected i.v. with 25 µl antiserum to FSH on Days 5, 6 or 7 of the cycle: the length of the luteal phase was shortened but there was no alteration in cycle length. Proven fertile females (N = 6) were caged throughout the period of the experiment (6 cycles) with proven fertile males and treated with 25 µl FSH antiserum on Day 7 of each of 3 successive cycles. Out of 18 cycle exposures during the treatment phase, 17 were ovulatory, but no pregnancies occurred. In the post-treatment phase, 5 monkeys became pregnant within 3 cycle exposures. These results show that it is possible to render female monkeys infertile by creating luteal insufficiency and this can be achieved repeatedly in a reproducible manner by depriving the cyclic females of FSH support on Day 7 of consecutive cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In higher primates, although LH/CG play a critical role in the control of corpus luteum (CL) function, the direct effects of progesterone (P4) in the maintenance of CL structure and function are unclear. Several experiments were conducted in the bonnet monkey to examine direct effects of P4 on gene expression changes in the CL, during induced luteolysis and the late luteal phase of natural cycles. Methods: To identify differentially expressed genes encoding PR, PR binding factors, cofactors and PR downstream signaling target genes, the genome-wide analysis data generated in CL of monkeys after LH/P-4 depletion and LH replacement were mined and validated by real-time RT-PCR analysis. Initially, expression of these P4 related genes were determined in CL during different stages of luteal phase. The recently reported model system of induced luteolysis, yet capable of responsive to tropic support, afforded an ideal situation to examine direct effects of P4 on structure and function of CL. For this purpose, P4 was infused via ALZET pumps into monkeys 24 h after LH/P4 depletion to maintain mid luteal phase circulating P4 concentration (P4 replacement). In another experiment, exogenous P4 was supplemented during late luteal phase to mimic early pregnancy. Results: Based on the published microarray data, 45 genes were identified to be commonly regulated by LH and P4. From these 19 genes belonging to PR signaling were selected to determine their expression in LH/P-4 depletion and P4 replacement experiments. These 19 genes when analyzed revealed 8 genes to be directly responsive to P4, whereas the other genes to be regulated by both LH and P4. Progesterone supplementation for 24 h during the late luteal phase also showed changes in expression of 17 out of 19 genes examined. Conclusion: These results taken together suggest that P4 regulates, directly or indirectly, expression of a number of genes involved in the CL structure and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The effects of gonadotrophin-releasing hormone agonist (GnRH-a) administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes.Methods: The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR) per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures.Results: All cycles presented statistically significantly higher rates of implantation (P < 0.0001), CPR per transfer (P = 0.006) and ongoing pregnancy (P = 0.02) in the group that received luteal-phase GnRH-a administration than in the control group (without luteal-phase-GnRH-a administration). When meta-analysis was carried out only in trials that had used long GnRH-a ovarian stimulation protocol, CPR per transfer (P = 0.06) and ongoing pregnancy (P = 0.23) rates were not significantly different between the groups, but implantation rate was significant higher (P = 0.02) in the group that received luteal-phase-GnRH-a administration. on the other hand, the results from trials that had used GnRH antagonist multi-dose ovarian stimulation protocol showed statistically significantly higher implantation (P = 0.0002), CPR per transfer (P = 0.04) and ongoing pregnancy rate (P = 0.04) in the luteal-phaseGnRH- a administration group. The majority of the results presented heterogeneity.Conclusions: These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of experiments with Holstein heifers was conducted to develop the capability of inducing accessory corpus luteum (CL) with a GnRH agonist (Buserelin, 8 mu g; GnRHa) or hCG; (3,000 IU) to increase plasma progesterone concentrations (Exp. 1, 2, and 3) and to test whether induction of accessory CL with hCG will increase conception rates in heifers (Exp. 4) and lactating cows (Exp. 5). In Exp. 1, heifers were treated on d 5 after estrus with GnRHa (n = 8) or saline (n = 7); heifers in Exp. 2 received hCG (n = 5) or saline (n = 4) on d 5. Experiment 3 allowed a contemporary evaluation of heifers treated on d 5 with GnRHa (n = 6), hCG (n = 6), saline (n = 6), or GnRHa at d 5 and hCG at the time of the induced ovulation (n = 5). The GnRHa and hCG were equally effective in inducing an accessory CL (93% induction rate), but the subsequent increase in progesterone concentrations was greater in hCG-treated heifers. A greater half life of hCG may provide longer LH-like stimulation of the first-wave follicle and subsequent developing accessory CL or a greater luteotropic effect on the original CL. Induction of an accessory CL with hCG on d 5 or 6 after insemination did not increase pregnancy rates in fertile heifers (Exp. 4: hCG = 64.8% vs control = 62.9%; n = 243) or lactating dairy cows during summer heat stress (Exp. 5: hCG = 24.2% vs control = 23.5%; n = 201).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contents: Strategic supplementation of P4 may be used to increase conception rates in cattle, but timing of supplementation in relation to ovulation, mass of supplementary P4 and formulation of the P4-containing supplement has not been determined for beef cattle. Effects of supplementation of long-acting progesterone (P4) on Days 2 or 3 post-ovulation on development, function and regression of corpus luteum (CL) were studied in beef cattle. Cows were synchronized with an oestradiol/P4-based protocol and treated with 150 or 300 mg of long-acting P4 on Day 2 or 3 post-ovulation (6-7 cows/group). Colour-doppler ultrasound scanning and blood sample collection were performed from Day 2-21.5. Plasma P4 concentrations were greater (p < 0.05) from Day 2.5-5.5 in the Day 2-treated groups and from Day 3.5-5.5 in the Day 3-treated cows than in the control group. CL area and blood flow during Day 2-8.5 did not differ (p > 0.05) among groups, suggesting no effect of P4 treatment on luteal development. The frequency of cows that began luteolysis before Day 15 was greater (p < 0.04) in cows treated with 300 mg than in the controls, but there were no differences between non-treated and 150 mg-treated cows. The interval from pre-treatment ovulation to functional and structural luteolysis was shorter (p < 0.01) in the combined P4-treated groups than in the control cows. In conclusion, was showed for the first time that long-acting P4 supplementation on Day 2 or 3 post-ovulation increases P4 concentrations for ≥3 day, has no effect on luteal development, but anticipates the beginning of luteolysis in beef cattle. © 2013 Blackwell Verlag GmbH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to determine effects of lactation on basal LH and IGF-1 concentrations and on the LH response to a GnRH-analogue at different stages of the oestrous cycle in mares. A total of 17 cyclic Haflinger mares were included in the study. Experiments were performed on lactating mares in first postpartum oestrus, the subsequent early luteal phase, and second postpartum oestrus. Non-lactating mares were used in oestrus and early luteal phase. Blood samples were taken for 1 h at 15 min intervals. Mares were then injected with the GnRH-analogue buserelin (GnRHa; 5 microg i.v.) and blood samples were drawn every 15 min for further 2 h. LH in all samples and basal IGF-1-concentrations were determined by RIA. In lactating mares, basal LH concentrations during the early luteal phase tended to be lower (p = 0.07) and the LH response to GnRHa, calculated as area under the curve, was significantly less pronounced compared to non-lactating mares (p < 0.01). As well in lactating mares, the basal LH concentration between first early luteal phase and second oestrus differed significantly (p < 0.05) and the net response to GnRHa was significantly lower between first oestrus as well as second oestrus and first early luteal phase (p < 0.05) but not between first and second oestrous postpartum. Within the group of non-lactating mares, the LH response to GnRHa was as well significantly lower during oestrus than during early luteal phase (p < 0.01). IGF-1 concentrations differed neither between groups nor stages of the cycle within groups. In conclusion, basal and GnRHa-stimulated LH release in lactating mares is lower than in non-lactating mares. This difference, however, occurs only in the early luteal phase. In lactating mares, concentrations of LH appear adequate to allow ovulation to occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To analyze if oocytes can be obtained in all patients before cancer treatment within 2 weeks by initiating ovarian stimulation during the follicular or luteal phase. DESIGN: Prospective controlled multicenter trial. SETTING: Four university-based centers. PATIENT(S): Forty cancer patients before chemotherapy. INTERVENTION(S): Twenty-eight patients were stimulated with gonadotropins in the follicular phase (group I). In 12 patients (group II), ovarian stimulation was initiated in the luteal phase, and these received GnRH antagonists and recombinant FSH. In 14 patients, 143 oocytes were further processed for fertilization by intracytoplasmic sperm injection (ICSI). MAIN OUTCOME MEASURE(S): Number of oocytes aspirated after ovarian stimulation, cumulative FSH/hMG dosage, viability and maturity of oocytes, and fertilization rate by ICSI. RESULT(S): Patients in group I (age 27.6 +/- 4.9 yrs) were stimulated on average for 10.6 days, and patients in group II (age 31.2 +/- 5.7 yrs) for 11.4 days. Total amount of FSH was on average 2,255 IU (I) and 2,720 IU (II) per patient. Average and median numbers of aspirated oocytes were, respectively, 13.1 and 11.5 (I) versus 10.0 and 8.5 (II); 83.7% (I) and 80.4% (II) of the oocytes were mature and viable and could be treated by ICSI. Fertilization rate was 61.0% (I) versus 75.6% (II). CONCLUSION(S): This pilot study suggests that oocytes can be obtained before cancer treatment efficiently irrespective of the phase of the menstrual cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hormonal variations during the menstrual cycle (MC) may influence trainability of strength. We investigated the effects of a follicular phase-based strength training (FT) on muscle strength, muscle volume and microscopic parameters, comparing it to a luteal phase-based training (LT). Eumenorrheic women without oral contraception (OC) (N = 20, age: 25.9 ± 4.5 yr, height: 164.2 ± 5.5 cm, weight: 60.6 ± 7.8 kg) completed strength training on a leg press for three MC, and 9 of them participated in muscle biopsies. One leg had eight training sessions in the follicular phases (FP) and only two sessions in the luteal phases (LP) for follicular phase-based training (FT), while the other leg had eight training sessions in LP and only two sessions in FP for luteal phase-based training (LT). Estradiol (E2), progesterone (P4), total testosterone (T), free testosterone (free T) and DHEA-s were analysed once during FP (around day 11) and once during LP (around day 25). Maximum isometric force (Fmax), muscle diameter (Mdm), muscle fibre composition (No), fibre diameter (Fdm) and cell nuclei-to-fibre ratio (N/F) were analysed before and after the training intervention. T and free T were higher in FP compared to LP prior to the training intervention (P < 0.05). The increase in Fmax after FT was higher compared to LT (P <0.05). FT also showed a higher increase in Mdm than LT (P < 0.05). Moreover, we found significant increases in Fdm of fibre type ΙΙ and in N/F only after FT; however, there was no significant difference from LT. With regard to change in fibre composition, no differences were observed between FT and LT. FT showed a higher gain in muscle strength and muscle diameter than LT. As a result, we recommend that eumenorrheic females without OC should base the periodization of their strength training on their individual MC.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of the current study was to investigate the mechanism by which the corpus luteum (CL) of the monkey undergoes desensitization to luteinizing hormone following exposure to increasing concentration of human chorionic gonadotrophin (hCG) as it occurs in pregnancy. Female bonnet monkeys were injected (im) increasing doses of hCG or dghCG beginning from day 6 or 12 of the luteal phase for either 10 or 4 or 2 days. The day of oestrogen surge was considered as day '0' of luteal phase. Luteal cells obtained from CL of these animals were incubated with hCG (2 and 200 pg/ml) or dbcAMP (2.5, 25 and 100 mu M) for 3 h at 37 degrees C and progesterone secreted was estimated. Corpora lutea of normal cycling monkeys on day 10/16/22 of the luteal phase were used as controls, In addition the in vivo response to CG and deglycosylated hCG (dghCG) was assessed by determining serum steroid profiles following their administration. hCG (from 15-90 IU) but not dghCG (15-90 IU) treatment in vivo significantly (P < 0.05) elevated serum progesterone and oestradiol levels. Serum progesterone, however, could not be maintained at a elevated level by continuous treatment with hCG (from day 6-15), the progesterone level declining beyond day 13 of luteal phase. Administering low doses of hCG (15-90 IU/day) from day 6-9 or high doses (600 IU/day) on days 8 and 9 of the luteal phase resulted in significant increase (about 10-fold over corresponding control P < 0.005) in the ability of luteal cells to synthesize progesterone (incubated controls) in vitro. The luteal cells of the treated animals responded to dbcAMP (P < 0.05) but not to hCG added in vitro, The in vitro response of luteal cells to added hCG was inhibited by 0, 50 and 100% if the animals were injected with low (15-90 IU) or medium (100 IU) between day 6-9 of luteal phase and high (600 IU on day 8 and 9 of luteal phase) doses of dghCG respectively; such treatment had no effect on responsivity of the cells to dbcAMP, The luteal cell responsiveness to dbcAMP in vitro was also blocked if hCG was administered for 10 days beginning day 6 of the luteal phase. Though short term hCG treatment during late luteal phase (from days 12-15) had no effect on luteal function, 10 day treatment beginning day 12 of luteal phase resulted in regain of in vitro responsiveness to both hCG (P < 0.05) and dbcAMP (P < 0.05) suggesting that luteal rescue can occur even at this late stage. In conclusion, desensitization of the CL to hCG appears to be governed by the dose/period for which it is exposed to hCG/dghCG. That desensitization is due to receptor occupancy is brought out by the fact that (i) this can be achieved by giving a larger dose of hCG over a 2 day period instead of a lower dose of the hormone for a longer (4 to 10 days) period and (ii) the effect can largely be reproduced by using dghCG instead of hCG to block the receptor sites. It appears that to achieve desensitization to dbcAMP also it is necessary to expose the luteal cell to relatively high dose of hCG for more than 4 days.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Changes in MAPK activities were examined in the corpus luteum (CL) during luteolysis and pregnancy, employing GnRH antagonist (Cetrorelix)-induced luteolysis, stages of CL, and hCG treatment to mimic early pregnancy as model systems in the bonnet monkey. We hypothesized that MAPKs could serve to phosphorylate critical phosphoproteins to regulate luteal function. Analysis of several indices for structural (caspase-3 activity and DNA fragmentation) and functional (progesterone and steroidogenic acute regulatory protein expression) changes in the CL revealed that the decreased luteal function observed during Cetrorelix treatment and late luteal phase was associated with increased caspase-3 activity and DNA fragmentation. As expected, human chorionic gonadotropin treatment dramatically increased luteal function, but the indices for structural changes were only partially attenuated. All three MAPKs appeared to be constitutively active in the mid-luteal-phase CL, and activities of ERK-1/2 and p38-MAPK (p38), but not Jun N-terminal kinase (JNK)-1/2, decreased significantly (P < 0.05) within 12 - 24 h after Cetrorelix treatment. During the late luteal phase, in contrast to decreased ERK-1/2 and p38 activities, JNK-1/2 activities increased significantly (P < 0.05). Although human chorionic gonadotropin treatment increased ERK-1/2 and p38 activities, it decreased JNK-1/2 activities. The activation status of p38 was correlated with the phosphorylation status of an upstream activator, MAPK kinase-3/6 and the expression of MAPK activated protein kinase-3, a downstream target. Intraluteal administration of p38 kinase inhibitor (SB203580), but not MAPK kinase-1/2 inhibitor (PD98059), decreased the luteal function. Together, these data suggest an important role for p38 in the regulation of CL function in primates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies have shown that women are more sensitive than men to subtle cuteness differences in infant faces. It has been suggested that raised levels in estradiol and progesterone may be responsible for this advantage. We compared young women's sensitivity to computer-manipulated baby faces varying in cuteness. Thirty-six women were tested once during ovulation and once during the luteal phase of their menstrual cycle. In a two alternative forced-choice experiment, participants chose the baby which they thought was cuter (Task 1), younger (Task 2), or the baby that they would prefer to babysit (Task 3). Saliva samples to assess levels of estradiol, progesterone and testosterone were collected at each test session. During ovulation, women were more likely to choose the cuter baby than during the luteal phase, in all three tasks. These results suggest that cuteness discrimination may be driven by cyclic hormonal shifts. However none of the measured hormones were related to increased cuteness sensitivity. We speculate that other hormones than the ones measured here might be responsible for the increased sensitivity to subtle cuteness differences during ovulation.