997 resultados para lung nodules


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A system that can automatically detect nodules within lung images may assist expert radiologists in interpreting the abnormal patterns as nodules in 2D CT lung images. A system is presented that can automatically identify nodules of various sizes within lung images. The pattern classification method is employed to develop the proposed system. A random forest ensemble classifier is formed consisting of many weak learners that can grow decision trees. The forest selects the decision that has the most votes. The developed system consists of two random forest classifiers connected in a series fashion. A subset of CT lung images from the LIDC database is employed. It consists of 5721 images to train and test the system. There are 411 images that contained expert- radiologists identified nodules. Training sets consisting of nodule, non-nodule, and false-detection patterns are constructed. A collection of test images are also built. The first classifier is developed to detect all nodules. The second classifier is developed to eliminate the false detections produced by the first classifier. According to the experimental results, a true positive rate of 100%, and false positive rate of 1.4 per lung image are achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented that achieves lung nodule detection by classification of nodule and non-nodule patterns. It is based on random forests which are ensemble learners that grow classification trees. Each tree produces a classification decision, and an integrated output is calculated. The performance of the developed method is compared against that of the support vector machine and the decision tree methods. Three experiments are performed using lung scans of 32 patients including thousands of images within which nodule locations are marked by expert radiologists. The classification errors and execution times are presented and discussed. The lowest classification error (2.4%) has been produced by the developed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung nodules refer to a range of lung abnormalities the detection of which can facilitate early treatment for lung patients. Lung nodules can be detected by radiologists through examining lung images. Automated detection systems that locate nodules of various sizes within lung images can assist radiologists in their decision making. This paper presents a study of the existing methods on automated lung nodule detection. It introduces a generic structure for lung nodule detection that can be used to represent and describe the existing methods. The structure consists of a number of components including: acquisition, pre-processing, lung segmentation, nodule detection, and false positives reduction. The paper describes the algorithms used to realise each component in different systems. It also provides a comparison of the performance of the existing approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the study was to quantify and compare the effect of CT dose and of size and density of nodules on the detectability of lung nodules and to quantify the influence of CT dose on the size of the nodules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BackgroundDespite the increasingly higher spatial and contrast resolution of CT, nodular lesions are prone to be missed on chest CT. Tinted lenses increase visual acuity and contrast sensitivity by filtering short wavelength light of solar and artificial origin.PurposeTo test the impact of Gunnar eyewear, image quality (standard versus low dose CT) and nodule location on detectability of lung nodules in CT and to compare their individual influence.Material and MethodsA pre-existing database of CT images of patients with lung nodules >5 mm, scanned with standard does image quality (150 ref mAs/120 kVp) and lower dose/quality (40 ref mAs/120 kVp), was used. Five radiologists read 60 chest CTs twice: once with Gunnar glasses and once without glasses with a 1 month break between. At both read-outs the cases were shown at lower dose or standard dose level to quantify the influence of both variables (eyewear vs. image quality) on nodule sensitivity.ResultsThe sensitivity of CT for lung nodules increased significantly using Gunnar eyewear for two readers and insignificantly for two other readers. Over all, the mean sensitivity of all radiologist raised significantly from 50% to 53%, using the glasses (P value = 0.034). In contrast, sensitivity for lung nodules was not significantly affected by lowering the image quality from 150 to 40 ref mAs. The average sensitivity was 52% at low dose level, that was even 0.7% higher than at standard dose level (P value = 0.40). The strongest impact on sensitivity had the factors readers and nodule location (lung segments).ConclusionSensitivity for lung nodules was significantly enhanced by Gunnar eyewear (+3%), while lower image quality (40 ref mAs) had no impact on nodule sensitivity. Not using the glasses had a bigger impact on sensitivity than lowering the image quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. METHODS An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5-12 mm) was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp). For each protocol, at least 127 different nodules were scanned in 21-25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD) software. RESULTS The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7% ± 4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6% ± 4.3% (p = 0.031)]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists' sensitivity for detecting solid nodules at all dose levels (5-11%). No significant volume measurement errors (VMEs) were documented for the radiologists or the CAD software at any dose level. CONCLUSIONS Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND A precise detection of volume change allows for better estimating the biological behavior of the lung nodules. Postprocessing tools with automated detection, segmentation, and volumetric analysis of lung nodules may expedite radiological processes and give additional confidence to the radiologists. PURPOSE To compare two different postprocessing software algorithms (LMS Lung, Median Technologies; LungCARE®, Siemens) in CT volumetric measurement and to analyze the effect of soft (B30) and hard reconstruction filter (B70) on automated volume measurement. MATERIAL AND METHODS Between January 2010 and April 2010, 45 patients with a total of 113 pulmonary nodules were included. The CT exam was performed on a 64-row multidetector CT scanner (Somatom Sensation, Siemens, Erlangen, Germany) with the following parameters: collimation, 24x1.2 mm; pitch, 1.15; voltage, 120 kVp; reference tube current-time, 100 mAs. Automated volumetric measurement of each lung nodule was performed with the two different postprocessing algorithms based on two reconstruction filters (B30 and B70). The average relative volume measurement difference (VME%) and the limits of agreement between two methods were used for comparison. RESULTS At soft reconstruction filters the LMS system produced mean nodule volumes that were 34.1% (P < 0.0001) larger than those by LungCARE® system. The VME% was 42.2% with a limit of agreement between -53.9% and 138.4%.The volume measurement with soft filters (B30) was significantly larger than with hard filters (B70); 11.2% for LMS and 1.6% for LungCARE®, respectively (both with P < 0.05). LMS measured greater volumes with both filters, 13.6% for soft and 3.8% for hard filters, respectively (P < 0.01 and P > 0.05). CONCLUSION There is a substantial inter-software (LMS/LungCARE®) as well as intra-software variability (B30/B70) in lung nodule volume measurement; therefore, it is mandatory to use the same equipment with the same reconstruction filter for the follow-up of lung nodule volume.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A method is presented for identification of lung nodules. It includes three stages: image acquisition, background removal, and nodule detection. The first stage improves image quality. The second stage extracts long lobe regions. The third stage detects lung nodules. The method is based on the random forest learner. Training set contains nodule, non-nodule, and false-positive patterns. Test set contains randomly selected images. The developed method is compared against the support vector machine. True-positives of 100% and 85.9%, and false-positives of 1.27 and 1.33 per image were achieved by the developed method and the support vector machine, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The article tells about the development of an intelligent system that can improve early detection of lung tissue abnormalities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Automated classification of lung nodules is challenging because of the variation in shape and size of lung nodules, as well as their associated differences in their images. Ensemble based learners have demonstrated the potentialof good performance. Random forests are employed for pulmonary nodule classification where each tree in the forest produces a classification decision, and an integrated output is calculated. A classification aided by clustering approach is proposed to improve the lung nodule classification performance. Three experiments are performed using the LIDC lung image database of 32 cases. The classification performance and execution times are presented and discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this retrospective study was to evaluate the impact of energy subtraction (ES) chest radiography on the detection of pulmonary nodules and masses in daily routine. Seventy-seven patients and 25 healthy subjects were examined with a single exposure digital radiography system. Five blinded readers evaluated first the non-subtracted PA and lateral chest radiographs alone and then together with the subtracted PA soft tissue images. The size, location and number of lung nodules or masses were registered with the confidence level. CT was used as standard of reference. For the 200 total lesions, a sensitivity of 33.5-52.5% was found at non-subtracted and a sensitivity of 43.5-58.5% at energy-subtracted radiography, corresponding to a significant improvement in four of five readers (p < 0.05). However, in three of five readers the rate of false positives was higher with ES. With ES, sensitivity, but not the area under the alternative free-response receiver operating characteristics (AFROC) curve, showed a good correlation with reader experience (R = 0.90, p = 0.026). In four of five readers, the diagnostic confidence improved with ES (p = 0.0036). We conclude that single-exposure digital ES chest radiography improves detection of most pulmonary nodules and masses, but identification of nodules <1 cm and false-positive findings remain a problem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES To find the best pairing of first and second reader at highest sensitivity for detecting lung nodules with CT at various dose levels. MATERIALS AND METHODS An anthropomorphic lung phantom and artificial lung nodules were used to simulate screening CT-examination at standard dose (100 mAs, 120 kVp) and 8 different low dose levels, using 120, 100 and 80 kVp combined with 100, 50 and 25 mAs. At each dose level 40 phantoms were randomly filled with 75 solid and 25 ground glass nodules (5-12 mm). Two radiologists and 3 different computer aided detection softwares (CAD) were paired to find the highest sensitivity. RESULTS Sensitivities at standard dose were 92%, 90%, 84%, 79% and 73% for reader 1, 2, CAD1, CAD2, CAD3, respectively. Combined sensitivity for human readers 1 and 2 improved to 97%, (p1=0.063, p2=0.016). Highest sensitivities--between 97% and 99.0%--were achieved by combining any radiologist with any CAD at any dose level. Combining any two CADs, sensitivities between 85% and 88% were significantly lower than for radiologists combined with CAD (p<0.03). CONCLUSIONS Combination of a human observer with any of the tested CAD systems provide optimal sensitivity for lung nodule detection even at reduced dose at 25 mAs/80 kVp.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE The purpose of this study was to investigate the feasibility of microdose CT using a comparable dose as for conventional chest radiographs in two planes including dual-energy subtraction for lung nodule assessment. MATERIALS AND METHODS We investigated 65 chest phantoms with 141 lung nodules, using an anthropomorphic chest phantom with artificial lung nodules. Microdose CT parameters were 80 kV and 6 mAs, with pitch of 2.2. Iterative reconstruction algorithms and an integrated circuit detector system (Stellar, Siemens Healthcare) were applied for maximum dose reduction. Maximum intensity projections (MIPs) were reconstructed. Chest radiographs were acquired in two projections with bone suppression. Four blinded radiologists interpreted the images in random order. RESULTS A soft-tissue CT kernel (I30f) delivered better sensitivities in a pilot study than a hard kernel (I70f), with respective mean (SD) sensitivities of 91.1% ± 2.2% versus 85.6% ± 5.6% (p = 0.041). Nodule size was measured accurately for all kernels. Mean clustered nodule sensitivity with chest radiography was 45.7% ± 8.1% (with bone suppression, 46.1% ± 8%; p = 0.94); for microdose CT, nodule sensitivity was 83.6% ± 9% without MIP (with additional MIP, 92.5% ± 6%; p < 10(-3)). Individual sensitivities of microdose CT for readers 1, 2, 3, and 4 were 84.3%, 90.7%, 68.6%, and 45.0%, respectively. Sensitivities with chest radiography for readers 1, 2, 3, and 4 were 42.9%, 58.6%, 36.4%, and 90.7%, respectively. In the per-phantom analysis, respective sensitivities of microdose CT versus chest radiography were 96.2% and 75% (p < 10(-6)). The effective dose for chest radiography including dual-energy subtraction was 0.242 mSv; for microdose CT, the applied dose was 0.1323 mSv. CONCLUSION Microdose CT is better than the combination of chest radiography and dual-energy subtraction for the detection of solid nodules between 5 and 12 mm at a lower dose level of 0.13 mSv. Soft-tissue kernels allow better sensitivities. These preliminary results indicate that microdose CT has the potential to replace conventional chest radiography for lung nodule detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Examination of cytological samples of cancer to suggest a possible primary site of origin is one of the commonest and most difficult tasks of diagnostic cytopathologists. Currently, both cytomorphology and immunocytochemistry are the main approaches to this diagnostic dilemma. We report the application of microsatellite analysis in cytological samples in a patient with a primary colonic tumour and two subsequent lung nodules, which were suspected on CT scans of the chest, and compared the findings with those obtained with conventional immunocytochemistry. The molecular results were in agreement with the radiological impression and conflicted with the immunocytochemistry. We conclude that immunocytochemical and molecular biology approaches to the diagnosis of tumours may give rise to contradictory results.