939 resultados para lung mechanics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the effects of an intramuscular injection of Tityus serrulatus venom (TsV) (0.67 mu g/g) on lung mechanics and lung inflammation at 15, 30, 60 and 180 min after inoculation. TsV inoculation resulted in increased lung elastance when compared with the control group (p < 0.001): these values were significantly higher at 60 min than at 15 and 180 min (p < 0.05). Resistive pressure (Delta P(1)) values decreased significantly at 30, 60 and 180 min after TsV injection (p < 0.001). TsV inoculation resulted in increased lung inflammation, characterised by an increased density of mononuclear cells at 15, 30, 60 and 180 min after TsV injection when compared with the control group (p < 0.001). TsV inoculation also resulted in an increased pulmonary density of polymorphonuclear cells at 15, 30 and 60 min following injection when compared to the control group (p < 0.001). In conclusion, T serrulatus venom leads to acute lung injury, characterised by altered lung mechanics and increased pulmonary inflammation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Gorticosteroids have been proposed to be effective in modulating the inflammatory response and pulmonary tissue remodeling in acute lung injury (ALI). We hypothesized that steroid treatment might act differently in models of pulmonary (p) or extrapulmonary (exp) ALI with similar mechanical compromise. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: One hundred twenty-eight BALB/c mice (20-25 g). Interventions: Mice were divided into six groups. In control animals sterile saline solution was intratracheally (0.05 mL, Cp) or intraperitoneally (0.5 mL, Gexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (10 mu g, ALIp) or intraperitoneally (125 mu g, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALlexp animals were further randomized into subgroups receiving saline (0.1 mL intravenously) or methylprednisolone (2 mg/kg intravenously, Mp and Mexp, respectively). Measurements and Main Results: At 24 hrs, lung state elastance, resistive and viscoelastic pressures, lung morphometry, and collagen fiber content were similar in both ALI groups. KC, interieukin-6, and transforming growth factor (TGF)-beta levels in bronchoatveolar lavage fluid, as well as tumor necrosis factor (TNF)-alpha, migration inhibitory factor (MIF), interferon (IFN)-gamma, TGF-beta 1 and TGF-beta 2 messenger RNA expression in lung tissue were higher in ALIp than in ALIexp animals. Methylprednisolone attenuated mechanical and morphometric changes, cytokine levels, and TNF-alpha, MIF, IFN gamma, and TGF-beta 2 messenger RNA expression only in ALIp animals, but prevented any changes in collagen fiber content in both ALI groups. Conclusions. Methylprednisolone is effective to inhibit fibrogenesis independent of the etiology of ALI, but its ability to attenuate inflammatory responses and lung mechanical changes varies according to the cause of ALI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the impact of three different oral nutritional support regimens on lung mechanics and remodelling in young undernourished Wistar rats. In the nutritionally deprived group, rats received one-third of their usual daily food consumption for 4 weeks. Undernourished rats were divided into three groups receiving a balanced, glutamine-supplemented, or long-chain triglyceride-supplemented diet for 4 weeks. In the two control groups, rats received food ad libitum for 4 (C4) or 8 weeks. Lung viscoelastic pressure and static elastance were higher in undernourished compared to C4 rats. After refeeding, lung mechanical data remained altered except for the glutamine-supplemented group. Undernutrition led to a reduced amount of elastic and collagen fibres in the alveolar septa. Elastic fibre content returned to control with balanced and glutamine-supplemented diets, but increased with long-chain triglyceride-supplemented diet. The amount of collagen fibre augmented independent of nutritional support. In conclusion, glutamine-supplemented diet is better at reducing morphofunctional changes than other diets after 4 weeks of refeeding. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to test the hypothesis that bone marrow mononuclear cell (BMDMC) therapy led an improvement in lung mechanics and histology in endotoxin-induced lung injury. Twenty-four C57BL/6 mice were randomly divided into four groups (n = 6 each). In the acute lung injur;y (ALI) group, Escherichia coli lipopolysaccharide (LPS) was instilled intratracheally (40 mu g, IT), and control (C) mice received saline (0.05 ml, IT). One hour after the administration of saline or LPS, BMDMC (2 x 10(7) cells) was intravenously injected. At day 28, animals were anesthetized and lung mechanics [static elastance (E(st)), resistive (Delta P(1)), and viscoelastic (Delta P(2)) pressures] and histology (light and electron microscopy) were analyzed. Immunogold electron microscopy was used to evaluate if multinucleate cells were type II epithelial cells. BMDMC therapy prevented endotoxin-induced lung inflammation, alveolar collapse, and interstitial edema. In addition, BMDMC administration led to epithelial and endothelial repair with multinucleated type II pneumocytes. These histological changes yielded a reduction in lung E(st), Delta P(1), and Delta P(2) compared to ALI. In the present experimental ALI model, the administration of BMDMC yielded a reduction in the inflammatory process and a repair of epithelium and endothelium, reducing the amount of alveolar collapse, thus leading to an improvement in lung mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (O,SmL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomies with a metallic cannula (14 gauge).The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups:(i) closed chest,(ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mUs). lnsufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a,b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (0,5mL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomized with a metallic cannula (14 gauge). The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups: (i) closed chest, (ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mL/s). Insufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a, b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Table 1: Mean and Standard Deviation of parameters obtained for each protocol. Protocol: Closed Chest – a (mL) -0.35±0.33; b (mL) 13.93±0.89; c (cm H2O) 21.28±2.37; d (cm H2O) 6.17±0.84; r²** (%) 99.4±0.14; Initial Elastance* (cm H2)/mL) 12.72±6.66; Weight (g) 232.33±5.72. Open Chest - a (mL) 0.01±0.28; b (mL) 14.79±0.54; c (cm H2O) 19.47±1.41; d (cm H2O) 3.50±0.28; r²** (%) 98.8±0.34; Initial Elastance* (cm H2)/mL) 28.68±2.36; Weight (g) 217.33±7.97. Isolated Lung - a (mL) -0.09±0.46; b (mL) 14.22±0.75; c (cm H2O) 21.76±1.43; d (cm H2O) 4.24±0.50; r²** (%) 98.9±0.19; Initial Elastance* (cm H2)/mL) 7.13±8.85; Weight (g) 224.33±16.66. * Elastance measures in the 0-0,1 mL range. ** Goodness of sigmoid fit versus measured data Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight premature infants ventilated for hyaline membrane disease and enrolled in the OSIRIS surfactant trial were studied. Lung mechanics, gas exchange [PaCO2, arterial/alveolar PO2 ratio (a/A ratio)], and ventilator settings were determined 20 minutes before and 20 minutes after the end of Exosurf instillation, and subsequently at 12-24 hour intervals. Respiratory system compliance (Crs) and resistance (Rrs) were measured by means of the single breath occlusion method. After surfactant instillation there were no significant immediate changes in PaCO2 (36 vs. 37 mmHg), a/A ratio (0.23 vs. 0.20), Crs (0.32 vs. 0.31 mL/cm H2O/kg), and Rrs (0.11 vs. 0.16 cmH2O/mL/s) (pooled data of 18 measurement pairs). During the clinical course, mean a/A ratio improved significantly each time from 0.17 (time 0) to 0.29 (time 12-13 hours), to 0.39 (time 24-36 hours) and to 0.60 (time 48-61 hours), although mean airway pressure was reduced substantially. Mean Crs increased significantly from 0.28 mL/cmH2O/kg (time 0) to 0.38 (time 12-13 hours), to 0.37 (time 24-38 hours), and to 0.52 (time 48-61 hours), whereas mean Rrs increased from 0.10 cm H2O/mL/s (time 0) to 0.11 (time 12-13 hours), to 0.13 (time 24-36 hours) and to (time 48-61 hours) with no overall significance. A highly significant correlation was found between Crs and a/A ratio (r = 0.698, P less than 0.001). We conclude that Exosurf does not induce immediate changes in oxygenation as does the instillation of (modified) natural surfactant preparations. However, after 12 and 24 hours of treatment oxygenation and Crs improve significantly.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the effects of an intramuscular injection of Tityus serrulatus venom (TsV) (0.67 mu g/g) on lung mechanics and lung inflammation at 15, 30, 60 and 180 min after inoculation. TsV inoculation resulted in increased lung elastance when compared with the control group (p < 0.001): these values were significantly higher at 60 min than at 15 and 180 min (p < 0.05). Resistive pressure (Delta P(1)) values decreased significantly at 30, 60 and 180 min after TsV injection (p < 0.001). TsV inoculation resulted in increased lung inflammation, characterised by an increased density of mononuclear cells at 15, 30, 60 and 180 min after TsV injection when compared with the control group (p < 0.001). TsV inoculation also resulted in an increased pulmonary density of polymorphonuclear cells at 15, 30 and 60 min following injection when compared to the control group (p < 0.001). In conclusion, T serrulatus venom leads to acute lung injury, characterised by altered lung mechanics and increased pulmonary inflammation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of prolonged recruitment manoeuvre (PRM) were compared with sustained inflation (SI) in paraquat-induced mild acute lung injury (ALI) in rats. Twenty-four hours after ALI induction, rats were anesthetized and mechanically ventilated with VT = 6 ml/kg and positive end-expiratory pressure (PEEP) = 5 cmH(2)O for 1 h. SI was performed with an instantaneous pressure increase of 40 cmH(2)O that was sustained for 40 s, while PRM was done by a step-wise increase in positive inspiratory pressure (PIP) of 15-20-25 cmH(2)O above a PEEP of 15 cm H(2)O (maximal PIP = 40 cmH(2)O), with interposed periods of PIP = 10 cmH(2)O above a PEEP = 15 cmH(2)O. Lung static elastance and the amount of alveolar collapse were more reduced with PRM than SI, yielding improved oxygenation. Additionally, tumour necrosis factor-alpha, interleukin-6, interferon-gamma, and type III procollagen mRNA expressions in lung tissue and lung epithelial cell apoptosis decreased more in PRM. In conclusion, PRM improved lung function, with less damage to alveolar epithelium, resulting in reduced pulmonary injury. (C) 2009 Elsevier BLV. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Many methods exist in the literature for identifying PEEP to set in ARDS patients following a lung recruitment maneuver (RM). We compared ten published parameters for setting PEEP following a RM. Methods: Lung injury was induced by bilateral lung lavage in 14 female Dorset sheep, yielding a PaO(2) 100-150 mmHg at F(I)O(2) 1.0 and PEEP 5 cmH(2)O. A quasi-static P-V curve was then performed using the supersyringe method; PEEP was set to 20 cmH(2)O and a RM performed with pressure control ventilation (inspiratory pressure set to 40-50 cmH(2)O), until PaO(2) + PaCO(2) > 400 mmHg. Following the RM, a decremental PEEP trial was performed. The PEEP was decreased in 1 cmH(2)O steps every 5 min until 15 cmH(2)O was reached. Parameters measured during the decremental PEEP trial were compared with parameters obtained from the P-V curve. Results: For setting PEEP, maximum dynamic tidal respiratory compliance, maximum PaO(2), maximum PaO(2) + PaCO(2), and minimum shunt calculated during the decremental PEEP trial, and the lower Pflex and point of maximal compliance increase on the inflation limb of the P-V curve (Pmci,i) were statistically indistinguishable. The PEEP value obtained using the deflation upper Pflex and the point of maximal compliance decrease on the deflation limb were significantly higher, and the true inflection point on the inflation limb and minimum PaCO(2) were significantly lower than the other variables. Conclusion: In this animal model of ARDS, dynamic tidal respiratory compliance, maximum PaO(2), maximum PaO(2) + PaCO(2), minimum shunt, inflation lower Pflex and Pmci,i yield similar values for PEEP following a recruitment maneuver.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa(O2)), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa(O2). PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To evaluate the effects of frequency and inspiratory plateau pressure (Pplat) during recruitment manoeuvres (RMs) on lung and distal organs in acute lung injury (ALI). We studied paraquat-induced ALI rats. At 24 h, rats were anesthetized and RMs were applied using continuous positive airway pressure (CPAP, 40 cmH(2)O/40 s) or three-different sigh strategies: (a) 180 sighs/h and Pplat = 40 cmH(2)O (S180/40), (b) 10 sighs/h and Pplat = 40 cmH(2)O (S10/40), and (c) 10 sighs/h and Pplat = 20 cmH(2)O (S10/20). S180/40 yielded alveolar hyperinflation and increased lung and kidney epithelial cell apoptosis as well as type III procollagen (PCIII) mRNA expression. S10/40 resulted in a reduction in epithelial cell apoptosis and PCIII expression. Static elastance and alveolar collapse were higher in S10/20 than S10/40. The reduction in sigh frequency led to a protective effect on lung and distal organs, while the combination with reduced Pplat worsened lung mechanics and histology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)