995 resultados para luminescenza complessi Ir(III) anioni soft salts


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi anni si è osservato un crescente sviluppo della ricerca nel campo dei materiali luminescenti per le loro diverse applicazioni reali e potenziali, fra cui l’impiego in dispositivi elettroluminescenti, quali OLEDs (Organic Light-Emitting Diodes) e LECs (Light-Emitting Electrochemical Cells). In modo particolare, si rivolge grande attenzione ai complessi ciclometallati di Ir(III) grazie alle peculiari caratteristiche che li contraddistinguono fra i materiali luminescenti, come l'emissione fosforescente, alte rese quantiche di emissione, lunghi tempi di vita e buona stabilità nei dispositivi. Oltre a tali caratteristiche uno dei principali vantaggi presentati dai complessi di Ir(III) è la possibilità di modulare la lunghezza d'onda di emissione modificando la struttura dei leganti ciclometallanti e ancillari. Considerata la versatilità di questi sistemi e la loro conseguente rilevanza, diverse sono state le strategie applicate per l'ottenimento di complessi di Ir(III) generalmente neutri e cationici; al contrario pochi esempi di complessi di Ir(III) anionici sono attualmente riportati in letteratura. Lo scopo del mio lavoro di tesi è stato quindi quello di sintetizzare tre nuovi complessi anionici luminescenti di Ir(III) con tre diversi leganti ciclometallanti. Il piano di lavoro è stato suddiviso in stadi successivi, partendo dalla sintesi dei tre leganti ciclometallanti, impiegati poi nella preparazione dei dimeri di Ir(III) precursori dei miei complessi; infine facendo reagire questi ultimi con un legante ancillare bisanionico, derivato dal di(1H-tetrazol-5-il)metano, si è giunti all'ottenimento di tre complessi anionici luminescenti di Ir(III). Dopo questa prima parte, il lavoro di tesi è proseguito con la caratterizzazione spettroscopica dei tre complessi anionici e la determinazione delle loro proprietà fotofisiche tramite la registrazione di spettri di assorbimento, di emissione e la determinazione delle rese quantiche di emissione e dei tempi di vita. Infine si è preparato un “soft salt” costituito da un complesso anionico e uno cationico di Ir(III) le cui caratteristiche sono tutt'ora oggetto di studio del gruppo di ricerca presso il quale ho svolto il mio lavoro di tesi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro di tesi sperimentale si è sintetizzata e caratterizzata la prima classe di complessi tetrazolici di Ir(III) anionici con formula generale [Ir(C^N)2(L)2]-, in cui oltre ai leganti ciclometallanti ”C^N” quali 2-fenilpiridinato (ppy) o 2-(2,4-difluorofenil)piridinato (F2ppy), sono stati introdotti due anioni tetrazolato (L) come il 5-fenil tetrazolato (Tph) oppure 5-(4-cianofenil) tetrazolato (TphCN). I complessi di Ir(III) anionici ottenuti si sono mostrati intensamente fosforescenti, con emissioni centrate nella regione del blu o del verde (460 < λmax<520 nm). I derivati anionici sono stati poi combinati con complessi Ir(III) tetrazolici cationici in grado di fornire emissione nella regione del rosso (λmax > 650 nm), formando così i primi esempi di coppie ioniche (“soft salts”) a matrice puramente tetrazolica. In tutti i casi si è osservato come il colore emesso da parte dei soft salts sia il risultato di una vera propria sintesi additiva delle emissioni derivanti da componenti ioniche con proprietà fotoemittive differenti. La sostanziale assenza di fenomeni di energy o electron transfer tra la componente anionica e cationica e il giusto bilancio tra le emissioni blu o verdi e rosse si sono tradotte, in taluni casi, nell’ottenimento di luce bianca, con la possibilità di variare ulteriormente i colori emessi in seguito all’allontanamento dell’ossigeno molecolare disciolto nelle soluzioni dei soft salts stessi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research project of my experimental thesis deals with the design, synthesis and characterization of a new series of luminescent metallapolymers to be exploited for their peculiar photophysical and opto-electronic properties. To this end, our design strategy consisted in the incorporation of brightly luminescent and colour tuneable Ir(III) cyclometalated complexes with general formula [Ir(C^N)2(N^N)]+, where C^N represents various phenyl piridine based cyclometalating ligands and N^N is an aromatic chelating N-heterocyle, into methyl methacrylate (MMA) based copolymers. Whereas the choice of the cyclometalating ligands was driven by the possibility to obtain different emission colours, the design of the N^N ligands was aimed to obtain a molecule capable of providing the chelate coordination to the metal centre and, at the same time, of being susceptible to polymerisation reactions. To fulfil these requirements, a new molecule (abbreviated as L) consisting in an alkylated 2-pyrydyl tetrazole structure equipped with a styryl unit was designed and successfully prepared. The preparation of the target cationic metallapolymers was accomplished by the complexation of the preformed MMA-L copolymers with different amounts of an appropriate Ir(III) dimeric precursor [(Ir(C^N)2Cl)2]. The investigation of the photophysical features of the new hybrid compounds in the solid state at r.t. suggested how these metallapolymers displayed brightly intense phosphorescent emissions, whose colour was found to span from blue to yellow according to the nature of the cyclometalating ligands. In all cases, the emissive performances were superior to those displayed by the corresponding mononuclear “model” complexes. These promising results pave the way for the application of this new class of metallapolymers as Luminescent Solar Concentrators for the photovoltaic technology and/or to solid state lighting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diodi organici emettitori di luce bianca (WOLEDs) sono dei dispositivi promettenti per la realizzazione di sorgenti luminose a basso consumo di energia, in quanto essi combinano un’alta efficienza e bassi costi di produzione con l’interessante caratteristica di poter produrre grandi superfici che emettono luce bianca di buona qualità. Tuttavia, la durata, le prestazioni e i costi devono ancora essere ottimizzati affinché i WOLEDs possano diventare commercialmente competitivi con le altre più comuni fonti di illuminazione; in particolare è necessario migliorare la stabilità e l’efficienza degli emettitori. Nella presente tesi viene trattata la sintesi di molecole organometalliche a singolo componente per ottenere un’elettroluminescenza di un bianco più puro possibile. In particolare l’attenzione è stata rivolta all’ottenimento di complessi eterometallici Ir-Eu. Sono stati sintetizzati tre diversi dimeri di Ir (III), con sistemi fenilpiridinici variamente fluorurati come leganti; a secondo del tipo di legante si hanno delle variazioni delle proprietà fotofisiche del complesso di Ir (III) successivamente prodotto. In seguito sono stati sintetizzati leganti bifunzionali contenenti un’unità isocianuro (in grado di coordinare selettivamente l’Iridio) e un gruppo acetilacetonato (in grado di coordinare selettivamente l’Europio). Tali leganti sono stati poi impiegati per formare il complesso di Eu (III). Infine, la reazione tra i dimeri di Ir (III) e il complesso di Eu (III) ha portato alla formazione dei complessi eterometallici Ir-Eu, che sono stati poi caratterizzati sia strutturalmente che fotofisicamente. Grazie ai due diversi centri emissivi presenti nella stessa molecola si è ottenuta una complessiva luce bianca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this experimental thesis, two luminescent Ir(III) and Re(I) complexes which have a terminal alkynyl group on the tetrazole ligand were prepared. The aim was to use them as building blocks, in order to synthesize more complex structures. We explored two simple reactions: the first one was a coupling, for the formation of Ir(III)/Au(III) and Re(I)/Au(III) hetero binuclear complexes, and the second was a 1,3-dipolar Cu(I)-catalyzed “Click” cycloaddition, between the terminal alkyne and azide. The synthesized products were characterized through photophysical analysis, evaluating how the photoemissive properties of these substrates were affected by the formation of more complex structures. In questo lavoro di tesi sperimentale sono stati preparati due complessi luminescenti di Ir(III) e Re(I) che presentano un alchino terminale sul legante tetrazolico. Lo scopo è stato quello di utilizzarli come building blocks per la sintesi di strutture più complesse. Sono state esplorate due semplici reazioni: la prima di coupling, per la formazione di complessi etero binucleari Ir(III)/Au(III) e Re(I)/Au(III), e la seconda di “click”, ossia una cicloaddizione 1,3-dipolare Cu(I) catalizzata tra l’alchino terminale e un’azide. I prodotti sintetizzati sono stati caratterizzati attraverso analisi fotofisiche, valutando come le proprietà fotoemissive di questi substrati siano influenzate in seguito alla formazione di strutture più complesse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, cyclometalated Ir(III) complexes have drawn a large interest for their unique properties: they are excellent triplet state emitters, thus the emission is phosphorescent in nature; typically high quantum yields and good stability make them good candidates for luminescent materials. Moreover, through an opportune choice of the ligands, it is possible to tune the emission along the whole visible spectra. Thanks to these interesting features, Ir(III) complexes have found different applications in several areas of applied science, from OLEDs to bioimaging. In particular, regarding the second application, a remarkable red-shift in the emission is required, in order to minimize the problem of the tissue penetration and the possible damages for the organisms. With the aim of synthesizing a new family of NIR emitting Ir(III) complexes, we envisaged the possibility to use for the first time 2-(1H-tetrazol-1-yl)pyridine as bidentate ligand able to provide the required red-shift of the emission of the final complexes. Exploiting the versatility of the ligand, I prepared two different families of heteroleptic Ir(III) complexes. In detail, in the first case the 2-(1H-tetrazol-1-yl)pyridine was used as bis-chelating N^N ligand, leading to cationic complexes, while in the second case it was used as cyclometalating C^N ligand, giving neutral complexes. The structures of the prepared molecules have been characterised by NMR spectroscopy and mass spectrometry. Moreover, the neutral complexes’ emissive properties have been measured: emission spectra have been recorded in solution at both room temperature and 77K, as well as in PMMA matrix. DFT calculation has then been performed and the obtained results have been compared to experimental ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studi recenti sull’utilizzo di sonde organometalliche per bioconiugazione sfruttano la possibilità di interazione di queste con una proteina, l’avidina, per la sua capacità di coordinarsi selettivamente ad una particolare molecola organica, la biotina. In questa tesi viene descritta la sintesi di due leganti bi-funzionali contenenti sia un’unità capace di fungere da legante per un opportuno metallo, che un’unità di biotina in grado di legarsi all’avidina. La differenza fra i due leganti risiede nello spaziatore che collega le due unità funzionali della molecola. Una volta ottenuti i leganti progettati, sono stati sintetizzati i corrispondenti complessi di Ir (III) e Re (I). Le proprietà fotofisiche sono state misurate sia in solvente organico che in soluzione acquosa e quindi sono state effettuate titolazioni dell’avidina con soluzioni acquose a titolo noto dei complessi sintetizzati, con il fine di comprendere come le proprietà luminescenti dei complessi vengano influenzate dalla bio-coniugazione tra biotina ed avidina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the photophysical and photochemical characterization of new photo- and redox-active supramolecular systems. In particular we studied two different classes of compounds: metal complexes and dendrimers. Two different families of bis-cyclometalated neutral Ir(III) complexes are presented and their photophysical properties are discussed. The first family of complexes contains two 2-phenylpyridyl (ppy) or 2-(4,6-difluorophenyl)pyridyl (F2ppy) cyclometalated ligands and an ancillary ligand constituted by a phenol-oxazoline (phox), which can be substituted in the third position with a fluorine group (Fphox). In the second part of this study, we present another family of bis-cyclometalated Ir(III) complexes in which the ancillary ligand could be a chiral or an achiral bis-oxazoline (box). We report on their structural, electrochemical, photophysical, and photochemical properties. Complexes containing phox and Fphox ancillary ligands show blue luminescence with very high quantum yield, while complexes with box ligands do not show particularly interesting photophysical properties. Surprisingly these complexes give an unexpected photoreaction when irradiated with UV light in presence of dioxygen. This photoreaction originates a stable, strong blue emitting and particularly interesting photoproduct. Three successive generations of a family of polyethyleneglycol (PEG)-coated Pd(II) tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes are presented, and their ability to sensitize singlet oxygen and inflict cellular photodamage are discussed. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency, that approximate the unity, in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. Nevertheless, when compared against a commonly used singlet oxygen sensitizer, as Photofrin, the phosphorescent probes were found to be non-phototoxic. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. The results suggest that protected phosphorescent probes can be safely used for oxygen measurements in biological systems in vivo. A new family of two photoswitchable (G0(Azo) and G1(Azo)) dendrimers with an azobenzene core, two cyclam units as coordination sites for metal ions, and luminescent naphthalene units at the periphery have been characterized and their coordination abilities have been studied. Because of their proximity, the various functional groups of the dendrimer may interact, so that the properties of the dendrimers are different from those exhibited by the separated functional units. Both the naphthalene fluorescence and the azobenzene photoisomerization can be observed in the dendrimer, but it has been shown that (i) the fluorescent excited state of the naphthalene units is substantially quenched by excimer and exciplex formation and by energy transfer to the azobenzene units, and (ii) in the latter case the fluorescence quenching is accompanied by the photosensitized isomerization of the trans → cis, and, with higher efficiency, the cis → trans reaction. Complexation of these dendrimers, both trans and cis isomers, with Zn(II) ions shows that complexes of 1:1 and 2:1 metal per dendrimer stoichiometry are formed showing different photophysical and photochemical properties compared to the corresponding free ligands. Practically unitary efficiency of the sensitized isomerization of trans → cis and cis → trans reaction is observed, as well as a slight increase in the naphthalene monomer emission. These results are consistent with the coordination of the cyclam amine units with Zn(II), which prevents exciplex formation. No indication of a concomitant coordination of both cyclam to a single metal ion has been obtained both for trans and cis isomer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies on the use of bio-conjugating organometallic probes report on the possibility to use biotinylated-derivatives to selectively coordinate to a specific protein, avidin. In the present thesis, the synthesis of four new bifunctional ligands is described. The ligands contain both a pyridine triazolic unit able to coordinate a transition metal, and a biotin fragment able to bond avidin: the two functionalities are linked together by an appropriate aromatic linker (amide or ester). The obtained ligands were then employed to form luminescent Ir(III) complexes, that have been fully characterized also by a photophysical point of view both in organic and in aqueous solvent. Therefore, titrations of solutions of avidin with aqueous solutions of Ir(III)-complexes have been performed in order to estimate the luminescence variations of the complexes in the presence or in the absence of bio-conjugation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the modern society, light is mostly powered by electricity which lead to a significant increase of the global energy consumption. In order to reduce it, different kinds of electric lamps have been developed over the years; it is now accepted that phosphorescence-based OLEDs offer many advantages over existing light technologies. Iridium complexes are considered excellent candidates for bright materials by virtue of the possibility to easily tune the wavelength of the emitted radiation, by appropriate modifications of the nature of the ligands. It is important to note that the synthesis of Ir(III) blue-emitting complexes is a very challenging goal, because of wide HOMO-LUMO gaps needed for produce a deep blue emission. During my thesis I planned the synthesis of two different series of new Ir(III) heteroleptic complexes, the C and the N series, using cyclometalating ligands containing an increasing number of nitrogens in inverse and regular position. I successfully performed in the synthesis of the required four ligands, i.e. 1-methyl-4-phenyl-1H-imidazole (2), 4-phenyl-1-methyl-1,2,3-triazole (3), 1-phenyl-1H-1,2,3-triazole (6) and 1-phenyl-1H-tetrazole (7), that differ in the number of nitrogens present in the heterocyclic ring and in the position of the phenyl ring. Therefore the cyclometalation of the obtained ligands to get the corresponding Ir(III)-complexes was attempted. I succeeded in the synthesis of two Ir(III)-complexes of the C series, and I carried out various attempts to set up the appropriate reaction conditions to get the remaining desired derivatives. The work is still in progress, and once all the desired complexes will be synthesized and characterized, a correlation between their structure and their emitting properties could be formulated analysing and comparing the photophysical data of the real compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we report the synthsis and characterisation of new transition metal complexes of Pd(II),Cu(II),Ru(II) and Ir(III) of Schiff bases derived from quinoxaline-2-carboxaldehyde/3-hydroxyquinoxaline-2-carboxaldehyde and 5-aminoindazole.6-aminoindazole or 8-aminoquinoline.The complexes have been characterised by spectral and analytical data.Pd(II) and Cu(II) form square planar complexes and Ru(III) and Ir(III) form ctahedral complexes with these Schiff bases.The DNA binding properties of theses synthesised complexes have been studied by various methods including electronic absoption spectroscopy,cyclic voltammetry,different pulse voltammetry and circular dichroism spectra were used.Gel electrophoresis experiments were also performed to investigate the DNA cleavage of theses complexes.Furthermore Ru(III) and Ir(III) complexes find application as oxidation and hydogenation catalsts. The studies on catalytic activities has been presented.The metal complexes presented in this thesis assure significance as they contribute to the development of new DNA binding agents and antibacterial and anticancer drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many plant strengtheners are promoted for their supposed effects on nutrient uptake and/or resistance induction (IR). In addition, many organic fertilizers are supposed to enhance plant health and several studies have shown that tomatoes grown organically are more resistant to late blight, caused by Phytophthora infestans to tomatoes grown conventionally. Much is known about the mechanisms underlying IR. In contrast, there is no systematic knowledge about genetic variation for IR. Therefore, the following questions were addressed in the presented dissertation: (i) Is there genetic variation among tomato genotypes for inducibility of resistance to P. infestans? (ii) How do different PS compare with the chemical inducer BABA in their ability to IR? (iii) Does IR interact with the inducer used and different organic fertilizers? A varietal screening showed that contrary to the commonly held belief IR in tomatoes is genotype and isolate specific. These results indicate that it should be possible to select for inducibility of resistance in tomato breeding. However, isolate specificity also suggests that there could be pathogen adaptation. The three tested PS as well as two of the three tested organic fertilisers all induced resistance in the tomatoes. Depending on PS or BABA variety and isolate effects varied. In contrast, there were no variety and isolate specific effects of the fertilisers and no interactions with the PS and fertilisers. This suggests that the different PS should work independent of the soil substrate used. In contrast the results were markedly different when isolate mixtures were used for challenge inoculations. Plants were generally less susceptible to isolate mixtures than to single isolates. In addition, the effectiveness of the PS was greater and more similar to BABA when isolate mixtures were used. The fact that the different PS and BABA differed in their ability to induce resistance in different host genotype -pathogen isolate combinations puts the usefulness of IR as a breeding goal in question. This would result in varieties depending on specific inducers. The results with the isolate mixtures are highly relevant. On the one hand they increase the effectiveness of the resistance inducers. On the other hand, measures that increase the pathogen diversity such as the use of diversified host populations will also increase the overall resistance of the hosts. For organic tomato production the results indicate that it is possible to enhance the tomato growing system with respect to plant health management by using optimal fertilisers, plant strengtheners and any measures that increase system diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of electrochemiluminescence (ECL) involves photophysical and electrochemical aspects. Excited states are populated by an electrical stimulus. The most important applications are in the diagnostic field where a number of different biologically-relevant molecules (e.g. proteins and nucleic acids) can be recognized and quantified with a sensitivity and specificity previously not reachable. As a matter of fact the electrochemistry, differently to the classic techniques as fluorescence and chemiluminescence, allows to control the excited state generation spatially and temporally. The two research visits into A. J. Bard electrochemistry laboratories were priceless. Dr. Bard has been one of ECL pioneers, the first to introduce the technique and the one who discovered in 1972 the surprising emission of Ru(bpy)3 2+. I consider necessary to thank by now my supervisors Massimo and Francesco for their help and for giving me the great opportunity to know this unique science man that made me feel enthusiastic. I will never be grateful enough… Considering that the experimental techniques of ECL did not changed significantly in these last years the most convenient research direction has been the developing of materials with new or improved properties. In Chapter I the basics concepts and mechanisms of ECL are introduced so that the successive experiments can be easily understood. In the final paragraph the scopes of the thesis are briefly described. In Chapter II by starting from ECL experimental apparatus of Dr. Bard’s laboratories the design, assembly and preliminary tests of the new Bologna instrument are carefully described. The instrument assembly required to work hard but resulted in the introduction of the new technique in our labs by allowing the continuation of the ECL studies began in Texas. In Chapter III are described the results of electrochemical and ECL studies performed on new synthesized Ru(II) complexes containing tetrazolate based ligands. ECL emission has been investigated in solution and in solid thin films. The effect of the chemical protonation of the tetrazolate ring on ECL emission has been also investigated evidencing the possibility of a catalytic effect (generation of molecular hydrogen) of one of the complexes in organic media. Finally, after a series of preliminary studies on ECL emission in acqueous buffers, the direct interaction with calf thymus DNA of some complexes has been tested by ECL and photoluminescence (PL) titration. In Chapter IV different Ir(III) complexes have been characterized electrochemically and photophysically (ECL and PL). Some complexes were already well-known in literature for their high quantum efficiency whereas the remaining were new synthesized compounds containing tetrazolate based ligands analogous to those investigated in Chapt. III. During the tests on a halogenated complex was unexpectedly evidenced the possibility to follow the kinetics of an electro-induced chemical reaction by using ECL signal. In the last chapter (V) the possibility to use mono-use silicon chips electrodes as ECL analitycal devices is under investigation. The chapter begins by describing the chip structure and materials then a signal reproducibility study and geometry optimization is carried on by using two different complexes. In the following paragraphs is reported in detail the synthesis of an ECL label based on Ru(bpy)3 2+ and the chip functionalization by using a lipoic acid SAM and the same label. After some preliminary characterizations (mass spectroscopy TOF) has been demonstrated that by mean of a simple and fast ECL measurement it’s possible to confirm the presence of the coupling product SAM-label into the chip with a very high sensitivity. No signal was detected from the same system by using photoluminescence.