14 resultados para lubricity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic binders are used in premixes for powder metallurgy applications to prevent dusting and segregation. This is a particular problem for aluminium powder metallurgy because the dust is a potential safety hazard. The binder must also burn out completely at low temperatures in an inert environment and not react with the metal powders. It is demonstrated that cellulose acetate, polyvinyl acetate and polyvinyl alcohol are effective dedusting agents but they react with the metal powders during sintering and decrease the sintered density. Paraffin wan is an effect dedusting agent that provided die wall lubricity, does not interfere with sintering and increases tensile strength and ductility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel is a material used to produce heat or power by burning, and lubricity is the capacity for reducing friction. The aim of this work is evaluate the lubricity of eight fossil and renewable fuels used in Diesel engines, by means of a HFRR tester, following the ASTM D 6079-04 Standard. In this conception, a sphere of AISI 52100 steel (diameter of 6,000,05 mm, Ra 0,050,005 μm, E = 210 GPa, HRC 624, HV0,2 63147) is submitted to a reciprocating motion under a normal load of 2 N and 50 Hz frequency to promote a wear track length of 1.10.1mm in a plan disc of AISI 52100 steel (HV0,05 18410, Ra 0,020,005 μm). The testing extent time was 75 minutes, 225,000 cycles. Each one test was repeated six times to furnish the results, by means of intrinsic signatures from the signals of the lubricant film percentage, friction coefficient, contact heating, Sound Pressure Level, SPL [dB]. These signal signatures were obtained by two thermocouples and a portable decibelmeter coupled to a data acquisition system and to the HFRR system. The wettability of droplet of the diesel fuel in thermal equilibrium on a horizontal surface of a virgin plan disc of 52100 steel, Ra 0,02  0,005 μm, were measured by its contact angle of 7,0  3,5o, while the results obtained for the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of soybean oil were, respectively, 7,5  3,5o, 13,5  3,5o e 19,0  1,0o; for the distilled water, 78,0  6,0o; the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of sunflower oil were, respectively, 7,0  4,0o, 8,5  4,5o e 19,5  2,5o. Different thickness of lubricant film were formed and measured by their percentage by means of the contact resistance technique, suggesting several regimes, since the boundary until the hydrodynamic lubrication. All oils analyzed in this study promoted the ball wear scars with diameters smaller than 400 μm. The lowest values were observed in the scar balls lubricated by mixtures B100, B20 and B5 of sunflower and B20 and B5 of soybean oils (WSD < 215 μm)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biodiesel use has become important due to its renewable character and to reduce environmental impacts during the fuel burning. Theses benefit will be valid if the fuel shows good performance, chemistry stability and compatibility with engines. Biodiesel is a good fuel to diesel engines due to its lubricity. Then, the aimed of this study was to verify the physicalchemistry properties of biodiesel and their correlations with possible elastomers damage after biodiesel be used as fuel in an injection system. The methodology was divided in three steps: biodiesels synthesis by transesterification of three vegetable oil (soybean, palm and sunflower) and their physical-chemistry characterization (viscosity, oxidative stability, flash point, acidity, humidity and density); pressurized test of compatibility between elastomers (NBR and VITON) and biodiesel, and the last one, analyze of biodiesels lubricity by tribological test ball-plan( HFRR). Also, the effect of mixture of biodiesel and diesel in different concentrations was evaluated. The results showed that VITON showed better compatibility with all biodiesel blends in relation to NBR, however when VITON had contact with sunflower biodiesel and its blends the swelling degree suffer higher influences due to biodiesel humidity. For others biodiesels and theirs blends, this elastomer kept its mechanical properties constant. The better tribological performance was observed for blends with high biodiesel concentration, lower friction coefficient was obtained when palm biodiesel was used. The main mechanisms observed during the HFRR tests were abrasive and oxidative wear

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the fact that chromium electrodeposition results in protection against wear and corrosion, combined with chemical resistance and good lubricity, the reduction in fatigue strength of base metal and environmental requirements causes one to search for possible alternatives. To improve the fatigue and corrosion resistance of AISI 4340 steel, an experimental study has been made for an intermediate electroless nickel layer deposited on base metal. The objective of this study was to analyze the effect of nickel underplate on the fatigue and corrosion strength of hard-chromium-plated AISI 4340 steel. Deposition of the conventional wear-resistant hard chromium plating leads to a decrease in mechanical properties of the base metal, especially the fatigue strength. Rotating bending fatigue tests results indicate better performance for conventional hard chromium plating. Good corrosion resistance in salt fog exposure was obtained for the accelerated hard chromium plating. Experimental data showed higher fatigue and corrosion resistance for samples prepared with accelerated hard chromium plate over electroless nickel plate, when compared with samples without electroless nickel underplate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cases of decorative and functional applications, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. However, pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics has increased in recent years, related to the reduction in the fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride-free hard chromium electroplating is an improvement to the conventional process, considering chemical and physical final properties. One of the most interesting, environmentally safer and cleaner alternatives for the replacement of hard chrome plating is tungsten carbide thermal spray coating, applied by the high velocity oxy-fuel (HVOF) process. The aim of this study was to analyse the effects of the tungsten carbide thermal spray coating applied by the HP/HVOF process and of the high efficiency and fluoride-free hard chromium electroplating (in the present paper called 'accelerated'), in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behaviour in fatigue, corrosion, and abrasive wear tests. The results showed that the coatings were damaging to the AISI 4340 steel behaviour when submitted to fatigue testing, with the tungsten carbide thermal spray coatings showing the better performance. Experimental data from abrasive wear tests were conclusive, indicating better results from the WC coating. Regarding corrosion by salt spray test, both coatings were completely corroded after 72 h exposure. Scanning electron microscopy technique (SEM) and optical microscopy were used to observe crack origin sites, thickness and adhesion in all the coatings and microcrack density in hard chromium electroplatings, to aid in the results analysis. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale and aim: This paper has the object to present the impact of nuts' and seeds' injuries withdrawing data from the Susy Safe registry, highlighting that as for other foreign bodies the main item efficiently and substantially susceptible to changes to decrease the accidents' rates is the education of adults and children, that can be shared with parents both from pediatricians and general practitioners. Indeed labeling and age related warnings have also a fundamental relevance in prevention. Methods: The present study draws its data from the Susy Safe registry. Details on injuries are entered in the Susy Safe Web-registry through a standardized case report form, that includes information regarding: children age and gender, features of the object, circumstances of injury (presence of parents and activity) and hospitalization's details (lasting, complications and removal details). Cases are prospectively collected using the Susy Safe system from 06/2005; moreover, also information regarding past consecutive cases available in each centre adhering to the project have been entered in the Susy Safe registry. Results: Nuts and seeds are one of the most common food item retrieved in foreign bodies injuries in children. In Susy Safe registry they represent the 38% in food group, and almost the 10% in general cases. Trachea, bronchi and lungs were the main location of FB's retrieval, showing an incidence of 68%. Hospitalization occurred in 83% of cases, showing the major frequency for foreign bodies located in trachea. This location was also the principal site of complications, with a frequency of 68%. There were no significant associations between these outcomes and the age class of the children. The most common complications seen (22.4%) was bronchitis, followed by pneumonia (19.7%). Adult presence was recorded as positive in 71.2% of cases, showing an association (p value 0.009) between the adult supervision and the hospitalization outcome. On the contrary there was a non significant association between adult presence and the occurrence of complications. In 80.7% of cases, the incident happened while the child was eating. Among those cases, 88.6% interested trachea, lungs and bronchi. Conclusions: Food-related aspiration injuries are common events for young children, particularly under 4 years of age, and may lead to severe complication. There is a need to study in more depth specific characteristics of foreign bodies associated with increased hazard, such as size, shape, hardness or firmness, lubricity, pliability and elasticity, in order to better identify risky foods, and more precisely described the pathogenetic pathway. Parents are not adequately conscious and aware toward this risk; therefore, the number and severity of the injuries could be reduced by educating parents and children. Information about food safety should be included in all visits to pediatricians in order to make parents able to understand, select, and identify key characteristics of hazardous foods and better control the hazard level of various foods. Finally, preventive measures including warning labels on high-risk foods could be implemented. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cadmium has been widely used as a coating to provide protection against galvanic corrosion for steels and for its natural lubricity on threaded applications. However, it is a toxic metal and a known carcinogenic agent, which is plated from an aqueous bath containing cyanide salts. For these reasons, the use of cadmium has been banned in Europe for most industrial applications. However, the aerospace industry is still exempt due to the stringent technical and safety requirements associated with aeronautical applications, as an acceptable replacement is yet to be found. Al slurry coatings have been developed as an alternative to replace cadmium coatings. The coatings were deposited on AISI 4340 steel and have been characterized by optical and electron microscopy. Testing included salt fog corrosion exposure, fluid corrosion exposure (immersion), humidity resistance, coating-substrate and paint-coating adhesion, electric conductivity, galvanic corrosion, embrittlement and fatigue. The results indicated that Al slurry coatings are an excellent alternative for Cd replacement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pin on disc wear machines were used to study the boundary lubricated friction and wear of AISI 52100 steel sliding partners. Boundary conditions were obtained by using speed and load combinations which resulted in friction coefficients in excess of 0.1. Lubrication was achieved using zero, 15 and 1000 ppm concentrations of an organic dimeric acid additive in a hydrocarbon base stock. Experiments were performed for sliding speeds of 0.2, 0.35 and 0.5 m/s for a range of loads up to 220 N. Wear rate, frictional force and pin temperature were continually monitored throughout tests and where possible complementary methods of measurement were used to improve accuracy. A number of analytical techniques were used to examine wear surfaces, debris and lubricants, namely: Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), optical microscopy, Back scattered Electron Detection (BSED) and several metallographic techniques. Friction forces and wear rates were found to vary linearly with load for any given combination of speed and additive concentration. The additive itself was found to act as a surface oxidation inhibitor and as a lubricity enhancer, particularly in the case of the higher (1000 ppm) concentration. Wear was found to be due to a mild oxidational mechanism at low additive concentrations and a more severe metallic mechanism at higher concentrations with evidence of metallic delamination in the latter case. Scuffing loads were found to increase with increasing additive concentration and decrease with increasing speed as would be predicted by classical models of additive behaviour as an organo-metallic soap film. Heat flow considerations tended to suggest that surface temperature was not the overriding controlling factor in oxidational wear and a model is proposed which suggests oxygen concentration in the lubricant is the controlling factor in oxide growth and wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the characteristics of intermediate pyrolysis oils derived from sewage sludge and de-inking sludge (a paper industry residue), with a view to their use as fuels in a diesel engine. The feedstocks were dried and pelletised, then pyrolysed in the Pyroformer intermediate pyrolysis system. The organic fraction of the oils was separated from the aqueous phase and characterised. This included elemental and compositional analysis, heating value, cetane index, density, viscosity, surface tension, flash point, total acid number, lubricity, copper corrosion, water, carbon residue and ash content. Most of these results are compared with commercial diesel and biodiesel. Both pyrolysis oils have high carbon and hydrogen contents and their higher heating values compare well with biodiesel. The water content of the pyrolysis oils is reasonable and the flash point is found to be high. Both pyrolysis oils have good lubricity, but show some corrosiveness. Cetane index is reduced, which may influence ignition. Also viscosity is increased, which may influence atomisation quality. Carbon residue and ash content are both high, indicating potential deposition problems. Compared with de-inking sludge pyrolysis oil (DSPO), sewage sludge pyrolysis oil (SSPO) has a higher heating value, but higher corrosiveness and viscosity. The conclusions are that both intermediate pyrolysis oils will be able to provide sufficient heat when used in diesel engine; however poor combustion and carbon deposition may be encountered. Blending of these pyrolysis oils with diesel or biodiesel could overcome these problems and is recommended for further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the initial launch of silicone hydrogel lenses, there has been a considerable broadening in the range of available commercial material properties. The very mobile silicon–oxygen bonds convey distinctive surface and mechanical properties on silicone hydrogels, in which advantages of enhanced oxygen permeability, reduced protein deposition, and modest frictional interaction are balanced by increased lipid and elastic response. There are now some 15 silicone hydrogel material variants available to practitioners; arguably, the changes that have taken place have been strongly influenced by feedback based on clinical experience. Water content is one of the most influential properties, and the decade has seen a progressive rise from lotrafilcon-A (24%) to efrofilcon-A (74%). Moduli have decreased over the same period from 1.4 to 0.3 MPa, but not solely as a result of changes in water content. Surface properties do not correlate directly with water content, and ingenious approaches have been used to achieve desirable improvements (e.g., greater lubricity and lower contact angle hysteresis). This is demonstrated by comparing the hysteresis value of the earliest (lotrafilcon-A, >40°) and most recent (delefilcon-A, <10°) coated silicone hydrogels. Although wettability is important, it is not of itself a good predictor of ocular response because this involves a much wider range of physicochemical and biochemical factors. The interference of the lens with ocular dynamics is complex leading separately to tissue–material interactions involving anterior and posterior lens surfaces. The biochemical consequences of these interactions may hold the key to a greater understanding of ocular incompatibility and end of day discomfort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the effect of addition of partially hydrolyzed polyacrylamide (HPAM) and bentonite in the physicochemical properties of acquous drilling fluids. Two formulations were evaluated: F1 formulation, which was used as reference, containing carboxymethylcellulose (CMC), magnesium oxide (MgO), calcite (calcium carbonate - CaCO3 ), xanthan gum, sodium chloride (NaCl) and triazine (bactericidal); and F2, containig HPAM steady of CMC and bentonite in substituition of calcite. The prepared fluids were characterized by rheological properties, lubricity and fluid loss. Calcite was characterized by granulometry and thermal gravimetric analysis (TGA). The formulation F2 presented filtration control at 93◦C 34 mL while F1 had total filtration. The lubricity coefficient was 0.1623 for F2 and 0.2542 for F1, causing reduction in torque of 25% for F1 and 52 % for F2, compared to water. In the temperature of 49 ◦C and shear rate of 1022 s −1 , the apparent viscosities were 25, 5 and 48 cP for F1 and F2 formulation, respectively, showing greater thermal resistance to F2. With the confirmation of higher thermal stability of F2, factorial design was conducted in order to determine the HPAM and of bentonite concentrations that resulted in the better performance of the fluids. The statistical design response surfaces indicated the best concentrations of HPAM (4.3g/L) and bentonite (28.5 g/L) to achieve improved properties of the fluids (apparent viscosity, plastic viscosity, yield point and fluid loss) with 95% confidence, as well as the correlations between these factors (HPAM and bentonite concentrations). The thermal aging tests indicated that the formulations containing HPAM and bentonite may be used to the maximum temperature until 150 ◦C. The analyze of the filter cake formed after filtration of fluids by X-ray diffraction showed specific interactions between the bentonite and HPAM, explaining the greater thermal stability of F2 compared to the fluid F1, that supports maximum temperature of 93 ◦C.