196 resultados para lubricant
Underwater Emissions from a Two-Stroke Outboard Engine: Can the Type of Lubricant Make a Difference?
Resumo:
The emissions to water from a 1.9 kW two-stroke outboard engine were investigated in the laboratory and in the field, with the primary objective being to characterise and quantify the pollutants that remain within the water column. The emission rates of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) were determined for the engine when using a mineral and an equivalent environmentally adapted lubricant (EAL). A comparison of the emission rates was conducted between the results from the fresh and sea water tests. The results showed that there was little difference in the emission rates of these pollutants when either of the lubricants was used in both the fresh and sea water. A further set of tests were done to find out the effect on pH of water due to the underwater emissions and these tests were done using both mineral and environmentally adapted lubricant. The results showed that the type of lubricant does not have any effect on the change in pH of the water.
Resumo:
This paper attends to the idea of disconnection as a way of theorising people’s lived experience of social networking sites. Enrolling and extending a disconnective practice lens we suggest that the disconnective strategies of suspension and prevention are operational necessities for those we might see as the users and owners of sites such as Facebook. Indeed, our work demonstrates that disconnection in these contexts need not be associated only with modes of resistance and departure, but can also act as socioeconomic lubricant.
Resumo:
In lubricated sliding contacts, components wear out and the lubricating oil ages with time. The present work explores the interactive influence between lubricant aging and component wear. The flat face of a steel pin is slid against a rotating steel disk under near isothermal conditions while the contact is immersed in a reservoir of lubricant (hexadecane). The chemical changes in the oil with time are measured by vibrational spectroscopy and gas chromatography. The corresponding chemistry of the pin surface is recorded using X-ray photoelectron spectroscopy while the morphology of the worn pins; surface and subsurface, are observed using a combination of focused ion beam milling and scanning electron 5 microscopy. When compared to thermal auto-oxidation of the lubricant alone, steel on steel friction and wear are found to accentuate the decomposition of oil and to reduce the beneficial impact of antioxidants. The catalytic action of nascent iron, an outcome of pin wear and disk wear, is shown to contribute to this detrimental effect. Over long periods of sliding, the decomposition products of lubricant aging on their own, as well as in conjunction with their products of reaction with iron, generate a thick tribofilm that is highly protective in terms of friction and wear.
Resumo:
Simultaneous measurements of thickness and temperature profile of the lubricant film at chip-tool interface during machining have been studied in this experimental programme. Conventional techniques such as thermography can only provide temperature measurement under controlled environment in a laboratory and without the addition of lubricant. The present study builds on the capabilities of luminescent sensors in addition to direct image based observations of the chip-tool interface. A suite of experiments conducted using different types of sensors are reported in this paper, especially noteworthy are concomitant measures of thickness and temperature of the lubricant. (C) 2014 Elsevier Ltd.