951 resultados para low temperature caustic reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methanol has been shown to promote the hydrocarbon selective catalytic reduction of NO with octane and toluene over 2wt% Ag/AlO catalyst for the first time. In order to understand its role in the reaction fast transient kinetic methods and in situ DRIFTS analysis have been used. The catalytic activity tests showed that the addition of methanol to the HC-SCR reaction results in a significant improvement in the low temperature activity of a Ag/AlO catalyst, despite the fact that methanol on its own is not reactive for the HC-SCR reaction. This promotional effect of methanol is dependent on the concentration of added methanol and is not necessarily associated with a higher concentration of reductant in the SCR feed. The fast transient kinetic analysis has shown that at each temperature the addition of methanol enhances the conversions of both NO and octane and the production of N with high selectivity in comparison with those observed with n-octane or toluene alone. This phenomenon is similar to the effect of H which may be associated with the release of hydrogen and ammonia during the transient switches at 250 and 300°C. Together with the fast transient experiments, the DRIFTS results showed that NCO species are formed when introducing methanol to the n-octane-SCR feed while CN species are removed/consumed from the surfaces of the Ag catalyst. These NCO species formed by adding methanol may play a vital role in promoting the catalytic activity of NO reduction and methanol itself can be an in situ source for hydrogen formation, which subsequently enhances the SCR reaction. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low temperature water–gas shift (WGS) reaction has been studied over Ni–CeO2/Graphene and Ni/Graphene. The catalysts were prepared with 5 wt.% Ni and 20 wt.% CeO2 loadings, by deposition-precipitation employing sodium hydroxide and urea as precipitating agents. The materials were characterized by TEM, powder X-ray diffraction, Raman spectroscopy, H2-temperature-programmed reduction and X-ray photoelectron spectroscopy (XPS). The characterization and the reaction results indicated that the interaction between the active species and the support is higher than with activated carbon, and this hinders the reducibility of ceria and thus the catalytic performance. On the other hand, the presence of residual sodium in samples prepared by precipitation with NaOH facilitated the reduction of ceria. The catalytic activity was highly improved in the presence of sodium, what can be explained on the basis of an associative reaction mechanism which is favored over Ni-O-Na entities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low temperature water-gas shift (WGS) reaction has been studied over two commercial multiwall carbon nanotubes-supported nickel catalysts promoted by ceria. For comparison purposes, activated carbon-supported catalysts have also been studied. The catalytic performance and the characterization by N2 adsorption analysis, powder X-ray diffraction (XRD), temperature-programmed reduction with H2 (TPR-H2), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis showed that the surface chemistry has an important effect on the dispersion of ceria. As a result, ceria was successfully dispersed over the carbon nanotubes (CNTs) with less graphitic character, and the catalyst afforded better activity in WGS than the catalyst prepared over massive ceria. Moreover, a 20 wt.% CeO2 loading over this support was more active than the analogous catalyst with a 40 wt.% loading. The ceria nanoparticles were smaller when the support was previously oxidized, however this resulted in a decrease of the activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous derivatives of kaolin group minerals characterized by high specific surfaces and/or high cation exchange capacities and a .sup.27 AL MAS NMR spectrum having a dominant peak at about 55 ppm relative to Al(H.sub.2 O).sub.6.sup.3+. Such derivatives are prepared by reacting a kaolin group mineral with a reagent, such as, an alkali metal halide or an ammonium halide which converts the majority of the octahedrally coordinated aluminum in the kaolin group mineral to tetrahedrally coordinated aluminum. Such derivatives show high selectivity in its cation exchange towards the metals: Pb.sup.2+, Cu.sup.2+, Cd.sup.2+, Ni.sup.2+, CO.sup.2+, Cr.sup.3+, Sr.sup.2-, Zn.sup.2+, Nd.sup.3+ and UO.sub.2.sup.+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors that affect the settleability of seawater neutralised bauxite refinery residues are poorly understood, in particular, the settleability of precipitates in the absence of red mud and those formed with different alumina/caustic (AC) ratios. The influence of temperature, AC ratio, caustic concentration and the volumetric ratio of seawater on the settleability of seawater neutralisation precipitates and their respective compositions and stabilities have been determined. An array of techniques have been used to determine the composition and stability of precipitates and include pH, conductivity, inductively coupled plasma optical emission spectroscopy, infrared spectroscopy and X-ray diffraction. Temperature has been shown to have a significant influence on the settleability and calcium carbonate phase distributions in precipitates, as well as the overall stability of the precipitates. More complex phase compositions have also been found for Bayer liquors with lower AC ratios. The caustic concentration and temperature of the reaction have the greatest influence on the settling efficiency of the precipitates. Assessments on the chemical stability of the precipitates, precipitate settleability and discharge water quality have been made. In addition, productivity and environmental impacts caused by changes in precipitate settleability have also been considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the preparation method on the activity and stability of gold supported on ceria-zirconia low temperature water-gas shift (WGS) catalysts have been investigated. The influence of the gold deposition method, nature of the gold precursor, nature of the washing solution, drying method, Ce: Zr ratio of the support and sulfation of the support have been evaluated. The highest activity catalysts were obtained using a support with a Ce: Zr mole ratio 1: 1, HAuCl4 as the gold precursor deposited via deposition precipitation using sodium carbonate as the precipitation agent and the catalyst washed with water or 0.1 M NH4OH solution. In addition, the drying used was found to be critical with drying under vacuum at room temperature found to be most effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-stream deactivation during a water gas shift (WGS) reaction over gold supported on a ceria-zirconia catalyst was examined. Although the fresh catalyst has very high low temperature (<200 degrees C) for WGS activity, a significant loss of CO conversion is found under steady-state operations over hours. This has been shown to be directly related to the concentration of water in the gas phase. The same catalyst also undergoes thermal deactivation above 250 degrees C, and using a combined experimental and theoretical approach, a common deactivation mechanism is proposed. In both cases, the gold nanoparticles, which are found under reaction conditions, are thought to detach from the oxide support either through hydrolysis, <200 degrees C, or thermally, > 200 degrees C. This process reduces the metal-support interaction, which is considered to be critical in determining the high activity of the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inverse CeO2/CuO catalyst has been investigated by operando steady-state isotopic transient kinetic analysis (SSITKA) in combination with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under 3% CO +3% H2O reactant mixture at 473 K with the aim of determining intermediates involved in the water gas shift reaction at relatively low temperatures. Among the various species detected in the infrared spectra which may be involved in the reaction, i.e. formates, copper carbonyls and carbonates, a particular type of carbonate species is identified as a reaction intermediate on the basis of detailed analysis of the spectra during isotopic exchange in comparison with the change in the corresponding isotopically labelled CO2 product. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an investigation on CuO and CuO-ZnO catalysts supported on CeO(2) and CeO(2)-La(2)O(3) oxides, which were designed for the low temperature water-gas shift reaction (WGSR). Bulk catalysts were prepared by co-precipitation of metal nitrates and characterized by energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), surface area (by the BET method), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption near edge structure (XANES). The catalysts` activities were tested in the forward WGSR, and the CuO/CeO(2) catalyst presented the best catalytic performance. The reasons for this are twofold: (1) the presence of Zn inhibits the interaction between Cu and Ce ions, and (2) lanthanum oxide forms a solid solution with cerium oxide, which will cause a decrease in the surface area of the catalysts. Also the CuO/CeO(2) catalyst presented the highest Cu content on the surface, which could influence its catalytic behavior. Additionally, the Cu and Cu(1+) species could influence the catalytic activity via a reduction-oxidation mechanism, corroborating to the best catalytic performance of the Cu/Ce catalyst. (c) 2010 Elsevier B.V. All rights reserved.