883 resultados para low molecular weight chitosan-N-2-hydroxypropyl trimethyl
Resumo:
The antioxidant potency of high/low molecular weight quatemary chitosan derivatives was investigated employing various established systems in vitro, such as superoxide (O-2(center dot-)) and hydroxyl (center dot OH) radicals scavenging, reducing power and iron ion chelating. As expected, we obtained several satisfying results, as follow: firstly, low molecular weight quaternary chitosan had stronger scavenging effect on O-2(center dot-) and center dot OH than high molecular weight quaternary chitosan. Secondly, the reducing power of low molecular weight quaternary chitosan was more pronounced than that of high molecular weight quaternary chitosan. Thirdly, ferrous ion chelating potency were showed to increase first and decrease afterwards with increasing concentration for two kinds of quaternary chitosans, namely, they have not concentration-dependence. However, the scavenging rate and reducing power of high and low molecular weight quaternary chitosans increased with their increasing conc centrations, and hence were concentration-dependent. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.
Resumo:
Non-viral gene delivery vectors are emerging as a safer alternative to viral vectors. Among natural polymers, chitosan (Ch) is the most studied one, and low molecular weight Ch, specifically, presents a wide range of advantages for non-viral pDNA delivery. It is crucial to determine the best process for the formation of Low Molecular Weight Chitosan (LMWC)-pDNA complexes and to characterize their physicochemical properties to better understand their behavior once the polyplexes are administered. The transfection efficiency of Ch based polyplexes is relatively low. Therefore, it is essential to understand all the transfection process, including the cellular uptake, endosomal escape and nuclear import, together with the parameters involved in the process to improve the design and development of the non-viral vectors. The aim of this review is to describe the formation and characterization of LMWC based polyplexes, the in vitro transfection process and finally, the in vivo applications of LMWC based polyplexes for gene therapy purposes.
Resumo:
A method based on capillary zone electrophoresis (CZE) was used to study the interaction between low molecular weight heparin (LMWH) and interleukin 2 (IL-2). The results showed that the increase of the concentration of LMWH led to the decrease of the peak height and the increase of the peak width of IL-2, but the peak areas were kept constant. The binding constant of IL-2 with LMWH was calculated as 1.2 x 10(6) M(-1) by Scatchard analysis, which is in good agreement with the results found in the references using enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the interaction between IL-2 and LMWH is of fast on-and-off kinetic binding reaction. CZE might be used to study not only slow on-and-off rates interactions, but also fast on-and-off rates ones. The binding constant can be calculated easily, and the method can be applied to study a wide range of heparin-protein interactions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Natural polymers, such as chitosan, obtained from chitin, are been widely studied for use in the tissue regeneration field. This study established a protocol to attain membranes made from this biopolymer, consisting of high or low molecular weight chitosan. The biocompatibility of these membranes was histologically evaluated, comparing them to collagen membrane surgically implanted in rat subcutaneous tissue. Fifteen Holtzmann rats were divided in three experimental groups: High and Low Molecular Weight Chitosan membranes (HMWC and LMWC) and Collagen membranes (C-control group); each of them with three experimental periods: 7, 15 and 30 days. As a result, after the seven days evaluation, the membranes were present and associated with a variable degree of inflammation, and after the 15 and 30 days evaluations, the membranes were absent in all groups. It is concluded that the chitosan-based membranes were successfully attained and presented comparable resorption times to collagen membranes.
Resumo:
The antioxidant potency of different molecular weight (DMW) chitosan and sulfated chitosan derivatives was investigated employing various established in vitro systems, such as superoxide (O-2(.-))/hydroxyl ((OH)-O-.) radicals scavenging, reducing power, iron ion chelating. As expected, we obtained several satisfying results, as follows: Firstly, low molecular weight chitosan had stronger scavenging effect on O-2(.-) and (OH)-O-. than high molecular weight chitosan. For example the O-2(.-) scavenging activity of low molecular weight chitosan (9 kDa) and high molecular weight chitosan (760 kDa) were 85.86 % and 35.50 % at 1.6 mg/mL, respectively. Secondly, comparing with DMW chitosan, DMW sulfated chitosans had the stronger inhibition effect on 0(2)(.-). At 0.05 mg/mL, the scavenging activity on O-2(.-) reached 86.26 %, for low molecular weight chitosan sulfate (9 kDa), but that of low molecular weight chitosan (9 kDa) was 85.86 % at 1.6 mg/mL. As concerning chitosan and sulfated chitosan of the same molecular weight, scavenging activities of sulfated chitosan on superoxide and hydroxyl radicals were more pronounced than that of chitosan. Thirdly, low molecular weight chitosan sulfate had more effective scavenging activity on 02 and (OH)-O-. than that of high molecular weight chitosan sulfate. Fourthly, DMW chitosans and sulfated chitosans were efficient in the reducing power, especially LCTS. Their orders were found to be LCTS > CTS4 > HCTS > CTS3 > CTS2 > CTS1 > CTS. Fifthly, CTS4 showed more considerable ferrous ion-chelating potency than others. Finally, the scavenging rate and reducing power of DMW chitosan and sulfated derivatives increased with their increasing concentration. Moreover, change of DMW sulfated chitosans was the most pronounced within the experimental concentration. However, chelating effect of DMW chitosans were not concentration dependent except for CTS4 and CTS1. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Mushrooms have the ability to promote apoptosis in tumor cell lines, but the mechanism of action is not quite well understood. Inhibition of the interaction between Bcl-2 and pro-apoptotic proteins could be an important step that leads to apoptosis. Therefore, the discovery of compounds with the ability to inhibit Bcl-2 is an ongoing research topic in drug discovery. In this study, we started by analyzing Bcl-2 experimental structures that are currently available in Protein Data Bank database. After analysis of the more relevant Bcl-2 structures, 4 were finally selected. An analysis of the best docking methodology was then performed using a cross-docking and re-docking approach while testing 2 docking softwares: AutoDock 4 and AutoDock Vina. Autodock4 provided the best docking results and was selected to perform a virtual screening study applied to a dataset of 40 Low Molecular Weight (LMW) compounds present in mushrooms, using the selected Bcl-2 structures as target. Results suggest that steroid are the more promising family, among the analyzed compounds, and may have the ability to interact with Bcl-2 and this way promoting tumor apoptosis. The steroids that presented lowest estimated binding energy (ΔG) were: Ganodermanondiol, Cerevisterol, Ganoderic Acid X and Lucidenic Lactone; with estimated ΔG values between -8,45 and -8,23 Kcal/mol. A detailed analysis of the docked conformation of these 4 top ranked LMW compounds was also performed and illustrates a plausible interaction between the 4 top raked steroids and Bcl-2, thus substantiating the accuracy of the predicted docked poses. Therefore, tumoral apoptosis promoted by mushroom might be related to Bcl-2 inhibition mediated by steroid family of compounds.
Resumo:
The blending of perfluorinated bile ester derivatives with the gelator 2,3-didecyloxyanthracene (DDOA) yields a new class of hybrid organo- and aerogels displaying a combination of optical and mechanical properties that differ from those of pure gels. Indeed, the nanofibers constituting the hybrid organogels emit polarized blue light and display dichroic near-UV absorption via the achiral DDOA molecules, thanks to their association with a chiral bile ester. Moreover, the thermal stability and the mechanical yield stress of the mixed organogels in DMSO are enhanced for blends of DDOA with the deoxycholic gelator (DC11) having a C-11 chain, as compared to the pure components' gels. When the chain length of the ester is increased to C-13 (DC13) a novel compound for aerogel formation directly in scCO(2) is obtained under the studied conditions. A mixture of this compound with DDOA is also able to gelate scCO(2) leading to novel composite aerogel materials. As revealed by SAXS measurements, the hybrid and the pure DDOA and DC13 aerogels display cell parameters that are very similar. These SAXS experiments suggest that crystallographic conditions are very favorable for the growth of hybrid molecular arrangements in which DDOA and DC13 units could be interchanged. Specific molecular interactions between two components are not always a pre-requisite condition for the formation of a hybrid nanostructured material in which the components mutually induce properties.
An improved method for the extraction of low molecular weight organic acids in variable charge soils
Resumo:
Due to specific adsorption to variable charge soils, low molecular weight organic acids (LMWOAs) have not been sufficiently extracted, even if common extractants, such as water and 0.1 M sodium hydroxide (NaOH), were employed. In this work, the method for extracting LMWOAs in soils with 0.1 M NaOH was improved for variable charge soils; e.g. 1.0 M potassium fluoride (KF) with pH 4.0 was applied as an extractant jointed with 0.1 M NaOH based on its stronger ability to change the electrochemical properties of variable charge soils by specific adsorption. With the proposed method, the recoveries of oxalic, tartaric, malic, citric and fumaric acids were increased from 83 4, 93 1, 22 2, 63 +/- 5 and 84 +/- 3% to 98 +/- 2, 100 +/- 2, 85 +/- 2, 90 +/- 2 and 89 +/- 2%, respectively, compared with NaOH alone. Simultaneously, the LMWOAs in Agri-Udic Ferrosol with field moisture were measured with a satisfactory result.
Resumo:
RP-HPLC analysis for low molecular weight organic acids in soil solution has been optimized. An Atlantis (TM) C-18 column was used for the analyses. An optimal determination for eleven organic acids in soil solution was found at room temperature (25 degrees C) and 220 nm detection wavelength, with a mobile phase of 10 mM KH2PO4 -CH3OH (955, pH 2.7), a flow rate of 0.8 mL/min and 10 mu L sample size. The detection limits ranged 3.2-619 ng/mL, the coefficients of variation ranged 1.3-4.6%, and the recoveries ranged 95.6-106.3% for soil solution with standard addition on the optimal conditions proposed.
Effects of low-molecular-weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles